• Photonics Research
  • Vol. 12, Issue 1, 154 (2024)
Yuxin Yang1、†, Jiaxin Gao1、†, Hao Wu1, Zhanke Zhou1, Liu Yang1, Xin Guo1、2、4、*, Pan Wang1、2, and Limin Tong1、2、3、5、*
Author Affiliations
  • 1Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • 2Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing 314000, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 4e-mail: guoxin@zju.edu.cn
  • 5e-mail: phytong@zju.edu.cn
  • show less
    DOI: 10.1364/PRJ.506681 Cite this Article Set citation alerts
    Yuxin Yang, Jiaxin Gao, Hao Wu, Zhanke Zhou, Liu Yang, Xin Guo, Pan Wang, Limin Tong, "Generating a nanoscale blade-like optical field in a coupled nanofiber pair," Photonics Res. 12, 154 (2024) Copy Citation Text show less
    References

    [1] C. Chen, N. Hayazawa, S. Kawata. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun., 5, 3312(2014).

    [2] J. F. Schultz, L. F. Li, S. Mahapatra. Defining multiple configurations of Rubrene on a Ag(100) surface with 5 Å spatial resolution via ultrahigh vacuum tip-enhanced Raman spectroscopy. J. Phys. Chem. C, 124, 2420-2426(2020).

    [3] J. Y. Xu, X. Zhu, S. J. Tan. Determining structural and chemical heterogeneities of surface species at the single-bond limit. Science, 371, 818-822(2021).

    [4] R. Zhang, Y. Zhang, Z. C. Dong. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 498, 82-86(2013).

    [5] Y. Zhang, B. Yang, A. Ghafoor. Visually constructing the chemical structure of a single molecule by scanning Raman picoscopy. Natl. Sci. Rev., 6, 1169-1175(2019).

    [6] B. Yang, G. Chen, A. Ghafoor. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photonics, 14, 693-699(2020).

    [7] R. A. Jensen, I. C. Huang, O. Chen. Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures. ACS Photon., 3, 423-427(2016).

    [8] A. N. Koya, J. Cunha, T. L. Guo. Novel plasmonic nanocavities for optical trapping-assisted biosensing applications. Adv. Opt. Mater., 8, 1901481(2020).

    [9] C. Zhan, G. Wang, J. Yi. Single-molecule plasmonic optical trapping. Matter, 3, 1350-1360(2020).

    [10] X. Zhang, R. F. Oulton, V. J. Sorger. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics, 2, 496-500(2008).

    [11] R. F. Oulton, V. J. Sorger, T. Zentgraf. Plasmon lasers at deep subwavelength scale. Nature, 461, 629-632(2009).

    [12] S. Jiang, Y. Zhang, R. Zhang. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering. Nat. Nanotechnol., 10, 865-869(2015).

    [13] F. Benz, M. K. Schmidt, A. Dreismann. Single-molecule optomechanics in ‘picocavities’. Science, 354, 726-729(2016).

    [14] N. Chiang, X. Chen, G. Goubert. Conformational contrast of surface-mediated molecular switches yields angstrom-scale spatial resolution in ultrahigh vacuum tip-enhanced Raman spectroscopy. Nano Lett., 16, 7774-7778(2016).

    [15] M. H. Liao, S. Jiang, C. R. Hu. Tip-enhanced Raman spectroscopic imaging of individual carbon nanotubes with subnanometer resolution. Nano Lett., 16, 4040-4046(2016).

    [16] F. Wang, Y. R. Shen. General properties of local plasmons in metal nanostructures. Phys. Rev. Lett., 97, 206806(2006).

    [17] H. Wu, Y. X. Gao, P. Z. Xu. Plasmonic nanolasers: pursuing extreme lasing conditions on nanoscale. Adv. Opt. Mater., 7, 1900334(2019).

    [18] H. Zhu, X. Yin, L. Chen. Directional beaming of light from a subwavelength metal slit with phase-gradient metasurfaces. Sci. Rep., 7, 12098(2017).

    [19] L. Yang, Z. K. Zhou, H. Wu. Generating a sub-nm-confined optical field in a nano-slit waveguiding mode. Adv. Photon., 5, 046003(2023).

    [20] H. Wu, L. Yang, P. Z. Xu. Photonic nanolaser with extreme optical field confinement. Phys. Rev. Lett., 129, 013902(2022).

    [21] Y. S. Hu, M. Zimmerley, Y. Li. Single-molecule super-resolution light-sheet microscopy. ChemPhysChem, 15, 577-586(2014).

    [22] Y. X. Zhao, M. Zhang, W. T. Zhang. Isotropic super-resolution light-sheet microscopy of dynamic intracellular structures at subsecond timescales. Nat. Methods, 19, 359-369(2022).

    [23] W. Wijngaard. Guided normal modes of two parallel circular dielectric rods. J. Opt. Soc. Am. B, 63, 944-950(1973).

    [24] C. S. Chang, H. C. Chang. Vector normal modes on two-core optical fibers. I. The normal mode solutions. J. Lightwave Technol., 15, 1213-1224(1997).

    [25] F. L. Kien, L. Ruks, S. N. Chormaic. Spatial distributions of the fields in guided normal modes of two coupled parallel optical nanofibers. New J. Phys., 23, 043006(2021).

    [26] F. L. Kien, S. N. Chormaic, T. Busch. Optical force between two coupled identical parallel optical nanofibers. Phys. Rev. A, 105, 063517(2022).

    [27] L. M. Tong, J. Y. Lou, Z. Z. Ye. Self-modulated taper drawing of silica nanowires. Nanotechnology, 16, 1445-1448(2005).

    [28] L. M. Tong, L. L. Hu, J. J. Zhang. Photonic nanowires directly drawn from bulk glasses. Opt. Express, 14, 82-87(2006).

    [29] J. Jackle, K. Kawasaki. Intrinsic roughness of glass surfaces. J. Phys. Condens. Matter, 7, 4351-4358(1995).

    [30] E. Radlein, G. H. Frischat. Atomic force microscopy as a tool to correlate nanostructure to properties of glasses. J. Non-Cryst. Solids, 222, 69-82(1997).

    [31] J. E. Hoffman, S. Ravets, J. A. Grover. Ultrahigh transmission optical nanofibers. AIP Adv., 4, 067124(2014).

    [32] R. Nagai, T. Aoki. Ultra-low-loss tapered optical fibers with minimal lengths. Opt. Express, 22, 28427-28436(2014).

    [33] N. Yao, S. Y. Linghu, Y. X. Xu. Ultra-long subwavelength micro/nanofibers with low loss. IEEE Photon. Technol. Lett., 32, 1069-1072(2020).

    [34] J. B. Zhang, Y. Kang, X. Guo. High-power continuous-wave optical waveguiding in a silica micro/nanofibre. Light Sci. Appl., 12, 89(2023).

    [35] F. Salvat-Pujol, J. S. Villarrubia. Conventional vs. model-based measurement of patterned line widths from scanning electron microscopy profiles. Ultramicroscopy, 206, 112819(2019).

    [36] T. Nakai, N. Norimatsu, Y. Noda. Changes in refractive index of fluoride glass fibers during fiber fabrication processes. Appl. Phys. Lett., 56, 203-205(1990).

    [37] H. Kakiuchida, K. Saito, A. J. Ikushima. Refractive index, density and polarizability of silica glass with various fictive temperatures. Jpn. J. Appl. Phys., 43, L743-L745(2004).

    [38] T. G. Tiecke, K. P. Nayak, J. D. Thompson. Efficient fiber-optical interface for nanophotonic devices. Optica, 2, 70-75(2015).

    [39] E. P. S. Tan, C. T. Lim. Mechanical characterization of nanofibers-a review. Compos. Sci. Technol., 66, 1102-1111(2006).

    [40] M. Asobe, T. Kanamori, K. Kubodera. Applications of highly nonlinear chalcogenide glass-fibers in ultrafast all-optical switches. IEEE J. Quantum Electron., 29, 2325-2333(1993).

    [41] Z. R. Li, C. F. Yao, Z. X. Jia. Broadband supercontinuum generation from 600 to 5400 nm in a tapered fluorotellurite fiber pumped by a 2010 nm femtosecond fiber laser. Appl. Phys. Lett., 115, 091103(2019).

    [42] P. Anger, P. Bharadwaj, L. Novotny. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett., 96, 113002(2006).

    [43] S. Kühn, U. Håkanson, L. Rogobete. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett., 97, 017402(2006).

    [44] B. N. J. Persson, A. Baratoff. Inelastic electron tunneling from a metal tip: the contribution from resonant processes. Phys. Rev. Lett., 59, 339-342(1987).

    [45] Y. Yang, D. Zhu, W. Yan. A general theoretical and experimental framework for nanoscale electromagnetism. Nature, 576, 248-252(2019).

    [46] L. Baschir, C. Opran, D. Savastru. Ellipsometric investigations of a-As2S3 thin films obtained by RF magnetron sputtering. Chalcogenide Lett., 15, 199-205(2018).

    [47] W. S. Rodney, I. H. Malitson, T. A. King. Refractive index of arsenic trisulfide. J. Opt. Soc. Am. B, 48, 633-636(1958).

    [48] L. V. R. Marcos, J. I. Larruquert, J. A. Mendez. Self-consistent optical constants of SiO2 and Ta2O5 films. Opt. Mater. Express, 6, 3622-3637(2016).

    Yuxin Yang, Jiaxin Gao, Hao Wu, Zhanke Zhou, Liu Yang, Xin Guo, Pan Wang, Limin Tong, "Generating a nanoscale blade-like optical field in a coupled nanofiber pair," Photonics Res. 12, 154 (2024)
    Download Citation