• Chinese Optics Letters
  • Vol. 22, Issue 1, 010501 (2024)
Wenping Qiu1, Shuang Liu1,*, Guanghua Cheng2, Huan Zhan3..., Guodong Zhang2, Guanpin Ren1, Zhongrui Sun1 and Min Zhang1|Show fewer author(s)
Author Affiliations
  • 1Department of Applied Physics, College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
  • 2School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China
  • 3Chengdu Development Center of Science and Technology of CAEP, Chengdu 610299, China
  • show less
    DOI: 10.3788/COL202422.010501 Cite this Article Set citation alerts
    Wenping Qiu, Shuang Liu, Guanghua Cheng, Huan Zhan, Guodong Zhang, Guanpin Ren, Zhongrui Sun, Min Zhang, "Femtosecond laser direct written fiber Bragg gratings with narrow bandwidth and high sideband suppression," Chin. Opt. Lett. 22, 010501 (2024) Copy Citation Text show less
    References

    [1] K. O. Hill, Y. Fujii, D. C. Johnson. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication. Appl. Phys. Lett., 32, 647(1978).

    [2] J. L. Blows, P. Hambley, L. Poladian. Increasing fiber photosensitivity to near-UV radiation by rare earth doping. IEEE Photon. Technol. Lett., 14, 938(2002).

    [3] P. J. Lemaire, R. M. Atkins, V. Mizrahi et al. High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres. Electron. Lett., 29, 1191(1993).

    [4] R. Chen, J. He, X. Xu et al. High-quality fiber Bragg gratings inscribed by femtosecond laser point-by-point technology. Micromachines, 13, 1808(2022).

    [5] C. Smelser, S. Mihailov, D. Grobnic. Formation of type I-IR and type II-IR gratings with an ultrafast IR laser and a phase mask. Opt. Express, 13, 5377(2005).

    [6] Y. Li, M. Yang, C. Liao et al. Prestressed fiber Bragg grating with high temperature stability. J. Lightwave Technol., 29, 1555(2011).

    [7] K. Oi, F. Barnier, M. Obara. Fabrication of fiber Bragg grating by femtosecond laser interferometry. 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 776(2001).

    [8] S. J. Mihailov, C. W. Smelser, P. Lu et al. Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation. Opt. Lett., 28, 995(2003).

    [9] A. Martinez, M. Dubov, I. Khrushchev et al. Direct writing of fibre Bragg gratings by femtosecond laser. Electron. Lett., 40, 1170(2004).

    [10] B. Xu, J. He, B. Du et al. Femtosecond laser point-by-point inscription of an ultra-weak fiber Bragg grating array for distributed high-temperature sensing. Opt. Express, 29, 32615(2021).

    [11] Y. Kondo, K. Nouchi, T. Mitsuyu et al. Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses. Opt. Lett., 24, 646(1999).

    [12] K. Zhou, M. Dubov, C. Mou et al. Line-by-line fiber Bragg grating made by femtosecond laser. IEEE Photon. Technol. Lett., 22, 1190(2010).

    [13] A. Theodosiou, J. Aubrecht, P. Peterka et al. Er/Yb double-clad fiber laser with fs-laser inscribed plane-by-plane chirped FBG laser mirrors. IEEE Photon. Technol. Lett., 31, 409(2019).

    [14] R. J. Williams, R. G. Kramer, S. Nolte et al. Femtosecond direct-writing of low-loss fiber Bragg gratings using a continuous core-scanning technique. Opt. Lett., 38, 1918(2013).

    [15] B. Huang, Z. Xu, X. Shu. Dual interference effects in a line-by-line inscribed fiber Bragg grating. Opt. Lett., 45, 2950(2020).

    [16] W. He, L. Zhu. A femtosecond laser inscribed fiber Bragg grating as a refractive index and temperature sensor based on side-polished method. Mod. Phys. Lett. B, 34, 2050296(2020).

    [17] J. He, B. Xu, X. Xu et al. Review of femtosecond-laser-inscribed fiber Bragg gratings: fabrication technologies and sensing applications. Photonic Sens., 11, 203(2021).

    [18] S. Liu, H. Zhan, K. Peng et al. Yb-doped triple-cladding laser fiber fabricated by chelate precursor doping technique. Asia Communications and Photonics Conference (ACP), 1(2018).

    [19] J.-Q. Liang, G.-S. Zhou, M. Mohebi. The relationship between laser polarization orientation and the energy absorption and damage threshold of the grating. Acta Opt. Sin., 5, 9(1989).

    [20] M. Ams, G. Marshall, D. Spence et al. Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Opt. Express, 13, 5676(2005).

    [21] G. Zhang, G. Cheng, M. Bhuyan et al. Efficient point-by-point Bragg gratings fabricated in embedded laser-written silica waveguides using ultrafast Bessel beams. Opt. Lett., 43, 2161(2018).

    [22] A. Ioannou, A. Theodosiou, C. Caucheteur et al. Direct writing of plane-by-plane tilted fiber Bragg gratings using a femtosecond laser. Opt. Lett., 42, 5198(2017).

    [23] S. Liu, R. Zhu, J. Wang et al. 3 kW 20/400 Yb-doped aluminophosphosilicate fiber with high stability. IEEE Photonics J., 10, 1503408(2018).

    [24] M. I. Bulatov, A. A. Shatsov. Strength and fracture resistance of quartz fibers with polyimide coatings. Russ. J. Non-Ferr. Met., 62, 756(2021).

    [25] R. J. Williams, N. Jovanovic, G. D. Marshall et al. Optimizing the net reflectivity of point-by-point fiber Bragg gratings: the role of scattering loss. Opt. Express, 20, 13451(2012).

    [26] M. P. Araújo, S. De Leo, G. G. Maia. Axial dependence of optical weak measurements in the critical region. J. Opt., 17, 035608(2015).

    [27] J. Wu, X. Xu, C. Liao et al. Optimized femtosecond laser direct-written fiber Bragg gratings with high reflectivity and low loss. Opt. Express, 31, 3831(2023).

    [28] X. Xu, J. He, J. He et al. Slit beam shaping for femtosecond laser point-by- point inscription of high-quality fiber Bragg gratings. J. Lightwave Technol., 39, 5142(2021).

    [29] A. Saliminia, R. Vallée. Fiber Bragg grating inscription based on optical filamentation of UV femtosecond laser pulses. Opt. Commun., 324, 245(2014).

    Data from CrossRef

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    [1] Zhong Luo, Bing Yu, Chengshuang Zhang, Xinyu Sun, Shengbo Dong.

    Wenping Qiu, Shuang Liu, Guanghua Cheng, Huan Zhan, Guodong Zhang, Guanpin Ren, Zhongrui Sun, Min Zhang, "Femtosecond laser direct written fiber Bragg gratings with narrow bandwidth and high sideband suppression," Chin. Opt. Lett. 22, 010501 (2024)
    Download Citation