• Photonics Research
  • Vol. 6, Issue 5, B50 (2018)
D. T. H. Tan1、*, K. J. A. Ooi1, and D. K. T. Ng2
Author Affiliations
  • 1Photonics Devices and Systems Group, Singapore University of Technology and Design, 8 Somapah Rd., Singapore 487372, Singapore
  • 2Data Storage Institute, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way #08-01 Innovis, Singapore 138634, Singapore
  • show less
    DOI: 10.1364/PRJ.6.000B50 Cite this Article Set citation alerts
    D. T. H. Tan, K. J. A. Ooi, D. K. T. Ng. Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform [Invited][J]. Photonics Research, 2018, 6(5): B50 Copy Citation Text show less
    References

    [1] A. Mekis, S. Abdalla, D. Foltz, S. Gloeckner, S. Hovey, S. Jackson, Y. Liang, M. Mack, G. Masini, M. Peterson, T. Pinguet, S. Sahni, M. Sharp, P. Sun, D. Tan, L. Verslegers, B. P. Welch, K. Yokoyama, S. Yu, P. M. de Dobbelaere. A CMOS photonics platform for high-speed optical interconnects. IEEE Photonics Conference, 356-357(2012).

    [2] R. C. Miller. Optical second harmonic generation in piezoelectric crystals. Appl. Phys. Lett., 5, 17-19(1964).

    [3] E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, R. M. Osgood. Self-phase-modulation in submicron silicon-on-insulator photonic wires. Opt. Express, 14, 5524-5534(2006).

    [4] I. W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, Y. A. Vlasov. Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides. Opt. Express, 14, 12380-12387(2006).

    [5] L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, D. J. Moss. CMOS-compatible integrated optical hyper-parametric oscillator. Nat. Photonics, 4, 41-45(2010).

    [6] M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, D. J. Moss. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structure. Nat. Photonics, 2, 737-740(2008).

    [7] D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, D. J. Moss. Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides. Opt. Express, 17, 1865-1870(2009).

    [8] A. Pasquazi, M. Peccianti, Y. Park, B. E. Little, S. T. Chu, R. Morandotti, J. Azana, D. J. Moss. Sub-picosecond phase-sensitive optical pulse characterization on a chip. Nat. Photonics, 5, 618-623(2011).

    [9] D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics, 7, 597-607(2013).

    [10] K. Ikeda, R. E. Saperstein, N. Alic, Y. Fainman. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt. Express, 16, 12987-12994(2008).

    [11] D. T. H. Tan, K. Ikeda, P. C. Sun, Y. Fainman. Group velocity dispersion and self phase modulation in silicon nitride waveguides. Appl. Phys. Lett., 96, 061101(2010).

    [12] J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, M. Lipson. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photonics, 4, 37-40(2010).

    [13] Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, A. L. Gaeta. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett., 36, 3398-3400(2011).

    [14] X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, M. Lipson. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4, 619-624(2017).

    [15] P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, C. Koos. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).

    [16] D. K. T. Ng, Q. Wang, T. Wang, S. K. Ng, Y. T. Toh, K. P. Lim, Y. Yang, D. T. H. Tan. Exploring high refractive index silicon-rich nitride films by low temperature inductively coupled plasma chemical vapor deposition and applications for integrated waveguides. ACS Appl. Mater. Interfaces, 7, 21884-21889(2015).

    [17] K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, L. K. Ang, Q. Wang, D. T. H. Tan. Ultralow power, broadband continuous wave four wave mixing in silicon rich nitride waveguides. Nonlinear Optics, NTh3A.9(2015).

    [18] T. Wang, D. K. T. Ng, S. K. Ng, Y. T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, D. T. H. Tan. Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides. Laser Photon. Rev., 9, 498-506(2015).

    [19] C. J. Krückel, A. Fülöp, T. Klintberg, J. Bengtsson, P. A. Andrekson, V. Torres-Company. Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides. Opt. Express, 23, 25827-25837(2015).

    [20] G. R. Lin, S. P. Su, C. L. Wu, Y. H. Lin, B. J. Huang, H. Y. Wang, C. T. Tsai, C. I. Wu, Y. C. Chi. Si-rich SiNx based Kerr switch enables optical data conversion up to 12  Gbit/s. Sci. Rep., 5, 9611(2015).

    [21] C. L. Wu, Y. H. Lin, S. P. Su, B. J. Huang, C. T. Tsai, H. Y. Wang, Y. C. Chi, C. I. Wu, G. R. Lin. Enhancing optical nonlinearity in a nonstoichiometric SiN waveguide for cross-wavelength all-optical data processing. ACS Photon., 2, 1141-1154(2015).

    [22] J. W. Choi, G. F. R. Chen, D. K. T. Ng, K. J. A. Ooi, D. T. H. Tan. Wideband nonlinear spectral broadening in ultra-short ultra-silicon rich nitride waveguides. Sci. Rep., 6, 27120(2016).

    [23] M. Mitrovic, X. Guan, H. Ji, L. K. Oxenløwe, L. H. Frandsen. Four-wave mixing in silicon-rich nitride waveguides. Frontiers in Optics, FM1D.6(2015).

    [24] X. Liu, M. Pu, B. Zhou, C. J. Krückel, A. Fülöp, V. Torres-Company, M. Bache. Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide. Opt. Lett., 41, 2719-2722(2016).

    [25] K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, D. T. H. Tan. Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge. Nat. Commun., 8, 13878(2017).

    [26] P. Xing, G. F. R. Chen, X. Zhao, M. C. Tan, D. T. H. Tan. Silicon rich nitride ring resonators for rare-earth doped C-band amplifiers pumped at the O-band. Sci. Rep., 7, 9101(2017).

    [27] E. Sahin, K. J. A. Ooi, G. F. R. Chen, D. K. T. Ng, C. E. Png, D. T. H. Tan. Enhanced optical nonlinearities in CMOS-compatible ultra-silicon-rich nitride photonic crystal waveguides. Appl. Phys. Lett., 110, 161113(2017).

    [28] C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, P. Petropoulos. Si-rich silicon nitride for nonlinear signal processing applications. Sci. Rep., 7, 22(2017).

    [29] M. R. Dizaji, C. J. Krückel, A. Fülöp, P. A. Andrekson, V. Torres-Company, L. R. Chen. Silicon-rich nitride waveguides for ultra-broadband nonlinear signal processing. Opt. Express, 25, 12100-12108(2017).

    [30] L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, G. Galli. Light emission from silicon-rich nitride nanostructures. Appl. Phys. Lett., 88, 183103(2006).

    [31] L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, T.-W. F. Chang, V. Sukhovatkin, E. H. Sargent. Light emission efficiency and dynamics in silicon-rich silicon nitride films. Appl. Phys. Lett., 88, 233109(2006).

    [32] H. Mertens, K. N. Andersen, W. E. Svendsen. Optical loss analysis of silicon rich nitride waveguides. European Conference on Optical Communications, p1.38(2002).

    [33] T. Barwicz. Silicon photonics for energy-efficient interconnects. J. Opt. Netw., 6, 63-72(2007).

    [34] F. Urbach. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev., 92, 1324(1953).

    [35] I. Goykhman, B. Desiatov, U. Levy. Ultrathin silicon nitride microring resonator for bio-photonic applications at 970  nm wavelength. Appl. Phys. Lett., 97, 081108(2010).

    [36] M. Tien, J. F. Bauters, M. J. R. Heck, D. J. Blumenthal, J. E. Bowers. Ultra-low loss Si3N4 waveguides with low nonlinearity and high power handling capability. Opt. Express, 18, 23562-23568(2010).

    [37] A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Dubois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, P. Van Dorpe. Low-loss single mode PECVD silicon nitride photonic wire waveguides for 532–900  nm wavelength window fabricated within a CMOS pilot line. IEEE Photon. J., 5, 2202809(2013).

    [38] C. Boehme, G. Lucovsky. Dissociation reactions of hydrogen in remote plasma-enhanced chemical vapor-deposition silicon nitride. J. Vac. Sci. Technol. A, 19, 2622-2628(2001).

    [39] H. T. Philipp, K. N. Andersen, W. Svendsen, H. Ou. Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics. Electron Lett., 40, 419-421(2004).

    [40] S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, D. L. Kwong. Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module. Opt. Express, 16, 20809-20816(2008).

    [41] F. Ay, A. Aydinli. Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides. Opt. Mater., 26, 33-46(2004).

    [42] A. Gondarenko, J. S. Levy, M. Lipson. High confinement micron-scale silicon nitride high Q ring resonator. Opt. Express, 17, 11366-11370(2009).

    [43] C. J. Krückel, A. Fülöp, Z. Ye, P. A. Andrekson, V. Torres-Company. Optical bandgap engineering in nonlinear silicon nitride waveguides. Opt. Express, 25, 15370-15380(2017).

    [44] F. L. Martinez, A. del Prado, I. Martil, G. Gonzalez-Diaz, W. Bohne, W. Fuhs, J. Rohrich, B. Selle, I. Sieber. Molecular models and activation energies for bonding rearrangement in plasma-deposited a–SiNx:H dielectric thin films treated by rapid thermal annealing. Phys. Rev. B, 63, 245320(2001).

    [45] K. N. Andersen, W. E. Svendsen, T. Stimpel-Lindner, T. Sulima, H. Baumgartner. Annealing and deposition effects of the chemical composition of silicon-rich nitride. Appl. Surf. Sci., 243, 401-408(2005).

    [46] V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, A. L. Gaeta. All-optical switching on a silicon chip. Opt. Lett., 29, 2867-2869(2004).

    [47] K. Debnath, T. D. Bucio, A. Al-Attili, A. Z. Khokhar, S. Saito, F. Y. Gardes. Photonic crystal waveguides on silicon rich nitride platform. Opt. Express, 25, 3214-3221(2017).

    [48] Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, M. Mori. Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguides. Opt. Express, 18, 5668-5673(2010).

    [49] B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, R. Baets. On-chip parametric amplification with 26.5  dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides. Opt. Lett., 36, 552-554(2011).

    [50] K. Y. Wang, A. C. Foster. GHz-rate optical parametric amplifier in hydrogenated amorphous silicon. J. Opt., 17, 094012(2015).

    [51] K. Narayanan, S. F. Preble. Optical nonlinearities in hydrogenated-amorphous silicon waveguides. Opt. Express, 18, 8998-9005(2010).

    [52] K. Y. Wang, A. C. Foster. Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides. Opt. Lett., 37, 1331-1333(2012).

    [53] V. Lucarini, J. J. Saarinen, K. E. Peiponen, E. M. Vartiainen. Kramers-Kronig Relations in Optical Materials Research(2005).

    [54] D. T. H. Tan, P. C. Sun, Y. Fainman. Monolithic nonlinear pulse compressor on a silicon chip. Nat. Commun., 1, 116(2010).

    [55] P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, A. De Rossi. Temporal solitons and pulse compression in photonic crystal waveguides. Nat. Photonics, 4, 862-868(2010).

    [56] D. T. H. Tan. Optical pulse compression on a silicon chip: effect of group velocity dispersion and free carriers. Appl. Phys. Lett., 101, 211112(2012).

    [57] A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, B. J. Eggleton. Observation of soliton compression in silicon photonic crystals. Nat. Commun., 5, 3160(2014).

    [58] D. T. H. Tan, A. M. Agarwal, L. C. Kimerling. Nonlinear photonic waveguides for on-chip optical pulse compression. Laser Photon. Rev., 9, 294-308(2015).

    [59] I. W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, R. M. Osgood. Supercontinuum generation in silicon photonic wires. Opt. Express, 15, 15242-15248(2007).

    [60] R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, A. L. Gaeta. Ultrabroadband supercontinuum generation in a CMOS-compatible platform. Opt. Lett., 37, 1685-1687(2012).

    [61] J. Safioui, F. Leo, B. Kuyken, S.-P. Gorza, S. K. Selvaraja, R. Baets, Ph. Emplit, G. Roelkens, S. Massar. Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths. Opt. Express, 22, 3089-3097(2014).

    [62] A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, A. L. Gaeta. Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt. Express, 14, 4357-4362(2006).

    [63] Q. Lin, O. J. Painter, G. P. Agrawal. Nonlinear optical phenomena in silicon waveguides: modeling and applications. Opt. Express, 15, 16604-16644(2007).

    [64] G. P. Agrawal. Nonlinear Fiber Optics(1995).

    [65] M. A. Foster, A. C. Turner, R. Salem, M. Lipson, A. L. Gaeta. Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides. Opt. Express, 15, 12949-12958(2007).

    [66] M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta. Broad-band optical parametric gain on a silicon photonic chip. Nature, 441, 960-963(2006).

    [67] C. Grillet, L. Carletti, C. Monat, P. Grosse, B. B. Bakir, S. Menezo, J. M. Fedeli, D. J. Moss. Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability. Opt. Express, 20, 22609-22615(2012).

    [68] T. Wang, N. Venkatram, J. Gosciniak, Y. Cui, G. Qian, W. Ji, D. T. H. Tan. Multi-photon absorption and third-order nonlinearity in silicon at mid-infrared wavelengths. Opt. Express, 21, 32192-32198(2013).

    [69] B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, R. Baets. Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides. Opt. Express, 19, B146-B153(2011).

    [70] A. Pasquazi, Y. Park, J. Azaña, F. Légaré, R. Morandotti, B. E. Little, S. T. Chu, D. J. Moss. Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide. Opt. Express, 18, 7634-7641(2010).

    [71] X. Liu, R. M. Osgood, Y. A. Vlasov, W. M. J. Green. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nat. Photonics, 4, 557-560(2010).

    [72] R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, M. Först. Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55  μm femtosecond pulses. Opt. Express, 14, 8336-8346(2006).

    [73] L. Yin, G. P. Agrawal. Impact of two-photon absorption on self-phase modulation in silicon waveguides. Opt. Lett., 32, 2031-2033(2007).

    [74] N. Suzuki. FDTD analysis of two-photon absorption and free-carrier absorption in Si high-index-contrast waveguides. J. Lightwave Technol., 25, 2495-2501(2007).

    [75] J. M. Dudley, J. R. Taylor. Supercontinuum Generation in Optical Fibers(2010).

    [76] L. Yin, Q. Lin, G. P. Agrawal. Soliton fission and supercontinuum generation in silicon waveguides. Opt. Lett., 32, 391-393(2007).

    [77] D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, Y. Fainman. Chip-scale dispersion engineering using chirped vertical gratings. Opt. Lett., 33, 3013-3015(2008).

    [78] D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, B. Jalali. Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides. Appl. Phys. Lett., 86, 071115(2005).

    [79] J. T. Mok, C. M. de Sterke, I. C. M. Littler, B. J. Eggleton. Dispersionless slow light using gap solitons. Nat. Phys., 2, 775-780(2006).

    [80] D. T. H. Tan, K. Ikeda, Y. Fainman. Coupled chirped vertical gratings for on-chip group velocity dispersion engineering. Appl. Phys. Lett., 95, 141109(2009).

    [81] G. F. R. Chen, T. Wang, C. Donnelly, D. T. H. Tan. Second and third order dispersion generation using nonlinearly chirped silicon waveguide gratings. Opt. Express, 21, 29223-29230(2013).

    [82] M. Soljacic, S. G. Johnson, S. Fan, M. Ibanesku, E. Ippen, J. D. Joannopoulos. Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. J. Opt. Soc. Am. B, 19, 2052-2059(2002).

    [83] J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, T. F. Krauss. Systematic design of flat band slow light in photonic crystal waveguides. Opt. Express, 16, 6227-6232(2008).

    [84] K. Suzuki, Y. Hamachi, T. Baba. Fabrication and characterization of chalcogenide glass photonic crystal waveguides. Opt. Express, 17, 22393-22400(2009).

    [85] M. Spurny, L. O’Faolain, D. A. P. Bulla, B. Luther-Davies, T. F. Krauss. Fabrication of low loss dispersion engineered chalcogenide photonic crystals. Opt. Express, 19, 1991-1996(2011).

    [86] M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, R. Morandotti. Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nat. Commun., 3, 765(2012).

    [87] L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, D. J. Moss. Integrated sources of photon quantum states based on nonlinear optics. Light Sci. Appl., 6, e17100(2017).

    [88] M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, R. Morandotti. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 546, 622-626(2017).

    [89] F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat. Photonics, 5, 770-776(2011).

    [90] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [91] S. W. Huang, H. Zhou, J. Yang, J. F. McMillan, A. Matsko, M. Yu, D. L. Kwong, L. Maleki, C. W. Wong. A broadband chip-scale optical frequency synthesizer at 2.7 × 10−16 relative uncertainty. Phys. Rev. Lett., 114, 053901(2015).

    [92] B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hansch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, N. Picque. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonicwire waveguide. Nat. Commun., 6, 6310(2015).

    [93] A. G. Griffith, M. Yu, Y. Okawachi, J. Cardenas, A. Mohanty, A. L. Gaeta, M. Lipson. Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects. Opt. Express, 24, 13044-13050(2016).

    [94] J. E. Heebner, R. W. Boyd. Enhanced all-optical switching by use of a nonlinear fiber ring resonator. Opt. Lett., 24, 847-849(1999).

    CLP Journals

    [1] Yuxing Yang, Zhenzhen Xu, Xinhong Jiang, Yu He, Xuhan Guo, Yong Zhang, Ciyuan Qiu, Yikai Su. High-efficiency and broadband four-wave mixing in a silicon-graphene strip waveguide with a windowed silica top layer[J]. Photonics Research, 2018, 6(10): 965

    [2] Meicheng Fu, Yi Zheng, Gaoyuan Li, Wenjun Yi, Junli Qi, Shaojie Yin, Xiujian Li, Xiaowei Guan. Ultra-compact titanium dioxide micro-ring resonators with sub-10-μm radius for on-chip photonics[J]. Photonics Research, 2021, 9(7): 1416

    [3] Yanmei Cao, Ezgi Sahin, Ju Won Choi, Peng Xing, George F. R. Chen, D. K. T. Ng, Benjamin J. Eggleton, Dawn T. H. Tan. Thermo-optically tunable spectral broadening in a nonlinear ultra-silicon-rich nitride Bragg grating[J]. Photonics Research, 2021, 9(4): 596

    [4] Neetesh Singh, Hamidu M. Mbonde, Henry C. Frankis, Erich Ippen, Jonathan D. B. Bradley, Franz X. Kärtner. Nonlinear silicon photonics on CMOS-compatible tellurium oxide[J]. Photonics Research, 2020, 8(12): 1904

    [5] Christian Lafforgue, Miguel Montesinos-Ballester, Thi-Thuy-Duong Dinh, Xavier Le Roux, Eric Cassan, Delphine Marris-Morini, Carlos Alonso-Ramos, Laurent Vivien. Supercontinuum generation in silicon photonics platforms[J]. Photonics Research, 2022, 10(3): A43

    D. T. H. Tan, K. J. A. Ooi, D. K. T. Ng. Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform [Invited][J]. Photonics Research, 2018, 6(5): B50
    Download Citation