• Advanced Imaging
  • Vol. 1, Issue 1, 011005 (2024)
Sheng Li1,2, Bowen Wang1,2, Haitao Guan1,2, Qian Chen2,*, and Chao Zuo1,2,*
Author Affiliations
  • 1Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
  • 2Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, China
  • show less
    DOI: 10.3788/AI.2024.10005 Cite this Article Set citation alerts
    Sheng Li, Bowen Wang, Haitao Guan, Qian Chen, Chao Zuo, "Snapshot macroscopic Fourier ptychography: far-field synthetic aperture imaging via illumination multiplexing and camera array acquisition," Adv. Imaging 1, 011005 (2024) Copy Citation Text show less
    References

    [1] F. Chen, R. Lasaponara, N. Masini. An overview of satellite synthetic aperture radar remote sensing in archaeology: from site detection to monitoring. J. Cult. Heritage, 23, 5(2017).

    [2] A. B. Meinel. Aperture synthesis using independent telescopes. Appl. Opt., 9, 2501(1970).

    [3] J.-L. Beuzit, A. Vigan, D. Mouillet et al. SPHERE: the exoplanet imager for the very large telescope. Astron. Astrophys., 631, A155(2019).

    [4] P. Mollière, R. van Boekel, J. Bouwman et al. Observing transiting planets with JWST - Prime targets and their synthetic spectral observations. Astron. Astrophys., 600, A10(2017).

    [5] L. J. Cutrona, E. N. Leith, L. J. Porcello et al. On the application of coherent optical processing techniques to synthetic-aperture radar. Proc. IEEE, 54, 1026(1966).

    [6] W. M. Brown. Synthetic aperture radar. IEEE Trans. Aerosp. Electron. Syst., AES-3, 217(1967).

    [7] E. H. K. Stelzer. Beyond the diffraction limit?. Nature, 417, 806(2002).

    [8] S. M. Beck, J. R. Buck, W. F. Buell et al. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing. Appl. Opt., 44, 7621(2005).

    [9] J. Wu, Y. Guo, C. Deng et al. An integrated imaging sensor for aberration-corrected 3D photography. Nature, 612, 62(2022).

    [10] Z. Zhao, Y. Zhou, B. Liu et al. Two-photon synthetic aperture microscopy for minimally invasive fast 3D imaging of native subcellular behaviors in deep tissue. Cell, 186, 2475(2023).

    [11] P. McManamon. Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology. Opt. Eng., 51, 060901(2012).

    [12] L. Li, S. Wang, F. Zhao et al. Single-shot deterministic complex amplitude imaging with a single-layer metalens. Sci. Adv., 10, eadl0501(2024).

    [13] G. Zheng, R. Horstmeyer, C. Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics, 7, 739(2013).

    [14] P. Chandra Konda, L. Loetgering, K. C. Zhou et al. Fourier ptychography: current applications and future promises. Opt. Express, 28, 9603(2020).

    [15] G. Zheng, C. Shen, S. Jiang et al. Concept, implementations and applications of Fourier ptychography. Nat. Rev. Phys., 3, 207(2021).

    [16] C. Guo, S. Jiang, L. Yang et al. Depth-multiplexed ptychographic microscopy for high-throughput imaging of stacked bio-specimens on a chip. Biosens. Bioelectron., 224, 115049(2023).

    [17] Y. Fan, J. Sun, Y. Shu et al. Efficient synthetic aperture for phaseless fourier ptychographic microscopy with hybrid coherent and incoherent illumination. Laser Photonics Rev., 17, 2200201(2023).

    [18] Y. Shu, J. Sun, J. Lyu et al. Adaptive optical quantitative phase imaging based on annular illumination Fourier ptychographic microscopy. PhotoniX, 3, 24(2022).

    [19] J. Li, N. Zhou, J. Sun et al. Transport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy. Light Sci. Appl., 11, 154(2022).

    [20] S. Zhou, J. Li, J. Sun et al. Transport-of-intensity Fourier ptychographic diffraction tomography: defying the matched illumination condition. Optica, 9, 1362(2022).

    [21] S. Dong, P. Nanda, R. Shiradkar et al. High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography. Opt. Express, 22, 20856(2014).

    [22] R. Horstmeyer, J. Chung, X. Ou et al. Diffraction tomography with Fourier ptychography. Optica, 3, 827(2016).

    [23] S. Pacheco, G. Zheng, R. Liang. Reflective Fourier ptychography. J. Biomed Opt., 21, 026010(2016).

    [24] J. Holloway, M. S. Asif, M. K. Sharma et al. Toward long-distance subdiffraction imaging using coherent camera arrays. IEEE Trans. Comput. Imaging, 2, 251(2016).

    [25] J. Holloway, Y. Wu, M. K. Sharma et al. SAVI: synthetic apertures for long-range, subdiffraction-limited visible imaging using Fourier ptychography. Sci. Adv., 3, e1602564(2017).

    [26] P. Song, S. Jiang, T. Wang et al. Synthetic aperture ptychography: coded sensor translation for joint spatial-Fourier bandwidth expansion. Photonics Res., 10, 1624(2022).

    [27] S. Dong, R. Horstmeyer, R. Shiradkar et al. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging. Opt. Express, 22, 13586(2014).

    [28] X. Ou, R. Horstmeyer, C. Yang et al. Quantitative phase imaging via Fourier ptychographic microscopy. Opt. Lett., 38, 4845(2013).

    [29] X. Ou, G. Zheng, C. Yang. Embedded pupil function recovery for Fourier ptychographic microscopy. Opt. Express, 22, 4960(2014).

    [30] S. Li, B. Wang, K. Liang et al. Far-field synthetic aperture imaging via Fourier ptychography with quasi-plane wave illumination. Adv. Photonics Res., 4, 2300180(2023).

    [31] Q. Zhang, Y. Lu, Y. Guo et al. First realization of macroscopic Fourier ptychography for hundred-meter distance sub-diffraction imaging(2023).

    [32] B. Cui, S. Zhang, Y. Wang et al. Pose correction scheme for camera-scanning Fourier ptychography based on camera calibration and homography transform. Opt. Express, 30, 20697(2022).

    [33] L. Bian, J. Suo, G. Zheng et al. Fourier ptychographic reconstruction using Wirtinger flow optimization. Opt. Express, 23, 4856(2015).

    [34] L. Bian, H. Song, L. Peng et al. High-resolution single-photon imaging with physics-informed deep learning. Nat. Commun., 14, 5902(2023).

    [35] J. Sun, C. Zuo, J. Zhang et al. High-speed Fourier ptychographic microscopy based on programmable annular illuminations. Sci. Rep., 8, 7669(2018).

    [36] J. Sun, Q. Chen, Y. Zhang et al. Efficient positional misalignment correction method for Fourier ptychographic microscopy. Biomed Opt. Express, 7, 1336(2016).

    [37] C. Zuo, J. Sun, Q. Chen. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy. Opt. Express, 24, 20724(2016).

    [38] X. Yang, P. C. Konda, S. Xu et al. Quantized Fourier ptychography with binary images from SPAD cameras. Photonics Res., 9, 1958(2021).

    [39] L. Bian, J. Suo, G. Situ et al. Content adaptive illumination for Fourier ptychography. Opt. Lett., 39, 6648(2014).

    [40] J. Sun, C. Zuo, J. Zhang et al. High-speed Fourier ptychographic microscopy based on programmable annular illuminations. Sci. Rep., 8, 7669(2018).

    [41] P. Song, R. Wang, J. Zhu et al. Super-resolved multispectral lensless microscopy via angle-tilted, wavelength-multiplexed ptychographic modulation. Opt. Lett., 45, 3486(2020).

    [42] Y. Gao, L. Cao. Projected refractive index framework for multi-wavelength phase retrieval. Opt. Lett., 47, 5965(2022).

    [43] Y. Fan, J. Sun, Q. Chen et al. Single-shot isotropic quantitative phase microscopy based on color-multiplexed differential phase contrast. APL Photonics, 4, 121301(2019).

    [44] J. Liu, Y. Feng, W. Li et al. Complex amplitude field recovery of a scattering media obstructed object with multi-captured images. Opt. Lett., 48, 4077(2023).

    [45] W. Li, B. Wang, T. Wu et al. Lensless imaging through thin scattering layers under broadband illumination. Photonics Res., 10, 2471(2022).

    [46] S. Dong, R. Shiradkar, P. Nanda et al. Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging. Biomed Opt. Express, 5, 1757(2014).

    [47] J. Sun, Q. Chen, J. Zhang et al. Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography. Opt. Lett., 43, 3365(2018).

    [48] Y. Zhou, J. Wu, Z. Bian et al. Fourier ptychographic microscopy using wavelength multiplexing. J. Biomed Opt., 22, 066006(2017).

    [49] B. Wilburn, N. Joshi, V. Vaish et al. High performance imaging using large camera arrays, 765(2005).

    [50] X. Lin, J. Wu, G. Zheng et al. Camera array based light field microscopy. Biomed Opt. Express, 6, 3179(2015).

    [51] P. C. Konda, J. M. Taylor, A. R. Harvey. Multi-aperture Fourier ptychographic microscopy, theory and validation. Opt. Lasers Eng., 138, 106410(2021).

    [52] J. Sun, Q. Chen, Y. Zhang et al. Sampling criteria for Fourier ptychographic microscopy in object space and frequency space. Opt. Express, 24, 15765(2016).

    [53] J. Wu, F. Yang, L. Cao. Resolution enhancement of long-range imaging with sparse apertures. Opt. Lasers Eng., 155, 107068(2022).

    [54] Y. F. Cheng, M. Strachan, Z. Weiss et al. Illumination pattern design with deep learning for single-shot Fourier ptychographic microscopy. Opt. Express, 27, 644(2019).

    [55] R. Wang, P. Song, S. Jiang et al. Virtual brightfield and fluorescence staining for Fourier ptychography via unsupervised deep learning. Opt. Lett., 45, 5405(2020).

    [56] B. Wang, S. Li, Q. Chen et al. Learning-based single-shot long-range synthetic aperture Fourier ptychographic imaging with a camera array. Opt. Lett., 48, 263(2023).

    [57] J. R. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt., 21, 2758(1982).

    [58] A. M. Maiden, J. M. Rodenburg. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy, 109, 1256(2009).

    Sheng Li, Bowen Wang, Haitao Guan, Qian Chen, Chao Zuo, "Snapshot macroscopic Fourier ptychography: far-field synthetic aperture imaging via illumination multiplexing and camera array acquisition," Adv. Imaging 1, 011005 (2024)
    Download Citation