• Advanced Photonics
  • Vol. 7, Issue 1, 016005 (2025)
Defeng Zou1, Runmin Liu2, Yanqing Shi2, Aoyan Zhang1..., Jialong Li1, Gina Jinna Chen1, Hong Dang1, Youjian Song2,*, Minglie Hu2,* and Perry Ping Shum1,3,*|Show fewer author(s)
Author Affiliations
  • 1Southern University of Science and Technology, State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Shenzhen, China
  • 2Tianjin University, School of Precision Instruments and Opto-electronics Engineering, Ultrafast Laser Laboratory, State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin, China
  • 3Pengcheng Laboratory, Shenzhen, China
  • show less
    DOI: 10.1117/1.AP.7.1.016005 Cite this Article Set citation alerts
    Defeng Zou, Runmin Liu, Yanqing Shi, Aoyan Zhang, Jialong Li, Gina Jinna Chen, Hong Dang, Youjian Song, Minglie Hu, Perry Ping Shum, "Resonantly driven nonlinear dynamics of soliton molecules in ultrafast fiber lasers," Adv. Photon. 7, 016005 (2025) Copy Citation Text show less
    References

    [1] S. H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering(2018).

    [2] M. Kauranen, A. V. Zayats. Nonlinear plasmonics. Nat. Photonics, 6, 737-748(2012).

    [3] A. H. Nayfeh, D. T. Mook. Nonlinear Oscillations(2008).

    [4] E. Ott, C. Grebogi, J. A. Yorke. Controlling chaos. Phys. Rev. Lett., 64, 1196-1199(1990).

    [5] G. M. Whitesides, B. Grzybowski. Self-assembly at all scales. Science, 295, 2418-2421(2002).

    [6] M. W. Hirsch, S. Smale, R. L. Devaney. Differential Equations, Dynamical Systems, and an Introduction to Chaos(2013).

    [7] Q. P. Unterreithmeier, T. Faust, J. P. Kotthaus. Damping of nanomechanical resonators. Phys. Rev. Lett., 105, 027205(2010).

    [8] N. I. Zheludev, Y. S. Kivshar. From metamaterials to metadevices. Nat. Mater., 11, 917-924(2012).

    [9] A. Eichler et al. Nonlinear damping in mechanical resonators made from carbon nanotubes and grapheme. Nat. Nanotechnol., 6, 339-342(2011).

    [10] J. M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys., 78, 1135-1184(2006).

    [11] F. T. Arecchi, S. Boccaletti, P. L. Ramazza. Pattern formation and competition in nonlinear optics. Phys. Rep., 318, 1-83(1999).

    [12] Y. V. Kartashov, B. A. Malomed, L. Torner. Solitons in nonlinear lattices. Rev. Mod. Phys., 83, 247-305(2011).

    [13] W Jia et al. Intracavity spatiotemporal metasurface. Adv. Photonics, 5, 026002(2023).

    [14] J. Zou et al. 3.6 W compact all-fiber Pr3+-doped green laser at 521 nm. Adv. Photonics, 4, 056001(2022). https://doi.org/10.1117/1.AP.4.5.056001

    [15] P. M. Paul et al. Observation of a train of attosecond pulses from high harmonic generation. Science, 292, 1689-1692.

    [16] P. Del’Haye et al. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [17] W. Wang, L. Wang, W. Zhang. Advances in soliton microcomb generation. Adv. Photonics, 2, 034001(2020).

    [18] M. Yu et al. Mode-locked mid-infrared frequency combs in a silicon microresonator. Optica, 3, 854-860(2016).

    [19] H. Zhang et al. The dissipative Talbot soliton fiber laser. Sci. Adv., 10, eadl2125(2024).

    [20] J. Peng et al. Modulation instability in dissipative soliton fiber lasers and its application on cavity net dispersion measurement. J. Lightwave Technol., 30, 2707-2712(2012).

    [21] N. N. Akhmediev, A. Ankiewicz, J. M. Soto-Crespo. Multisoliton solutions of the complex Ginzburg-Landau equation. Phys. Rev. Lett., 79, 4047-4051(1997).

    [22] D. Y. Tang et al. Observation of bound states of solitons in a passively mode-locked fiber laser. Phys. Rev. A, 64, 033814(2001).

    [23] J. M. Soto-Crespo et al. Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs. Phys. Rev. E, 75, 016613(2007).

    [24] L. M. Zhao et al. Bound states of gain-guided solitons in a passively mode-locked fiber laser. Opt. Lett., 32, 3191-3193(2007).

    [25] B. Cao et al. Spatiotemporal mode-locking and dissipative solitons in multimode fiber lasers. Light Sci. Appl., 12, 260(2023).

    [26] S. Liu et al. On-demand harnessing of photonic soliton molecules. Optica, 9, 240-250(2022).

    [27] Y. Guo et al. Unveiling the complexity of spatiotemporal soliton molecules in real time. Nat. Commun., 14, 2029(2023).

    [28] Y. Han et al. Pure-high-even-order dispersion bound solitons complexes in ultra-fast fiber lasers. Light Sci. Appl., 13, 101(2024).

    [29] X. Hu et al. Novel optical soliton molecules formed in a fiber laser with near-zero net cavity dispersion. Light Sci. Appl., 12, 38(2023).

    [30] Z. Z. Si et al. Polarization-induced buildup and switching mechanisms for soliton molecules composed of noise-like-pulse transition states. Laser Photonics Rev., 2401019(2024).

    [31] G. Herink et al. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science, 356, 50-54(2017).

    [32] K. Krupa et al. Real-time observation of internal motion within ultrafast dissipative optical soliton molecules. Phys. Rev. Lett., 118, 243901(2017).

    [33] X. Liu, X. Yao, Y. Cui. Real-time observation of the buildup of soliton molecules. Phys. Rev. Lett., 121, 023905(2018).

    [34] Y. Zhou et al. Buildup and dissociation dynamics of dissipative optical soliton molecules. Optica, 7, 965-972(2020).

    [35] Y. Cui et al. Dichromatic “breather molecules” in a mode-locked fiber laser. Phys. Rev. Lett., 130, 153801(2023).

    [36] D. Zou et al. Quantum limited timing jitter of soliton molecules in a mode-locked fiber laser. Opt. Express, 29, 34590-34599(2021).

    [37] D. Zou et al. Quasi-period dynamics of soliton molecules: route to chaos and intrinsic frequency entrainment. Ultrafast Sci., 4, 0061(2024).

    [38] Y. Du et al. Stable loosely bounded asymmetric soliton molecules in fiber lasers. Phys. Rev. A, 104, 043508(2021).

    [39] J. Peng et al. Breather molecular complexes in a passively mode-locked fiber laser. Laser Photonics Rev., 15, 2000132(2021).

    [40] X. Lu et al. From breather soliton molecules to chaos in a laser cavity: the scenario of intermittent transitions. Opt. Express, 32, 26207-26216(2024).

    [41] Y. Song et al. Chaotic internal dynamics of dissipative optical soliton molecules. Laser Photonics Rev., 17, 2300066(2023).

    [42] F. Kurtz, C. Ropers, G. Herink. Resonant excitation and all-optical switching of femtosecond soliton molecules. Nat. Photonics, 14, 9-13(2020).

    [43] C. Luo et al. Real-time comprehensive control over soliton molecules enabled by physics-inspired searching. Laser Photonics Rev., 18, 2401153(2024).

    [44] L. Nimmesgern et al. Soliton molecules in femtosecond fiber lasers: universal binding mechanism and direct electronic control. Optica, 8, 1334-1339(2021).

    [45] Y. Liu et al. Phase-tailored assembly and encoding of dissipative soliton molecules. Light Sci. Appl., 12, 123(2023).

    [46] M. Pang et al. All-optical bit storage in a fibre laser by optomechanically bound states of solitons. Nat. Photonics, 10, 454-458(2016).

    [47] W. Weng, R. Bouchand, T. J. Kippenberg. Formation and collision of multistability-enabled composite dissipative Kerr solitons. Phy. Rev. X, 10, 021017(2020).

    [48] D. Zou et al. Synchronization of the internal dynamics of optical soliton molecules. Optica, 9, 1307-1313(2022).

    [49] U. Fano. Effects of configuration interaction on intensities and phase shifts. Phys. Rev., 124, 1866-1878(1961).

    [50] R. Weill et al. Noise-mediated Casimir-like pulse interaction mechanism in lasers. Optica, 3, 189-192(2016).

    [51] M. H. J. De Jong et al. Mechanical overtone frequency combs. Nat. Commun., 14, 1458(2023).

    [52] H. A. Haus. Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron., 6, 1173-1185(2000).

    [53] T. Kaisar et al. Nonlinear stiffness and nonlinear damping in atomically thin MoS2 nanomechanical resonators. Nano Lett., 22, 9831-9838(2022).

    [54] A. Prosperetti. Application of the subharmonic threshold to the measurement of the damping of oscillating gas bubbles. J. Acoust. Soc. Amer., 61, 11-16(1977).

    [55] X. Zhang et al. From breather solitons to chaos in an ultrafast laser: the scenario of cascading short and long-period pulsations. Chaos Solitons Fractals, 182, 114841(2024).

    [56] X. Wu et al. Synchronization, desynchronization, and intermediate regime of breathing solitons and soliton molecules in a laser cavity. Phys. Rev. Lett., 131, 263802(2023).

    [57] M. T. Rosenstein, J. J. Collins, C. J. De Luca. A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D, 65, 117-134(1993).

    [58] J. M. Soto-Crespo, N. Akhmediev. Soliton as strange attractor: nonlinear synchronization and chaos. Phys. Rev. Lett., 95, 024101(2005).

    [59] H. Kang et al. Observation of optical chaotic solitons and modulated subharmonic route to chaos in mode-locked laser. Phys. Rev. Lett., 133, 263801(2024).

    [60] G. Xu et al. Spontaneous symmetry breaking of dissipative optical solitons in a two-component Kerr resonator. Nat. Commun., 12, 4023(2021).

    [61] F. Xin et al. Evidence of chaotic dynamics in three-soliton collisions. Phys. Rev. Lett., 127, 133901(2021).

    [62] X. Wu et al. Farey tree and devil’s staircase of frequency-locked breathers in ultrafast lasers. Nat. Commun., 13, 5784(2022).

    [63] J. A. Lang et al. Controlling intracavity dual-comb soliton motion in a single-fiber laser. Sci. Adv., 10, eadk229(2024).

    Defeng Zou, Runmin Liu, Yanqing Shi, Aoyan Zhang, Jialong Li, Gina Jinna Chen, Hong Dang, Youjian Song, Minglie Hu, Perry Ping Shum, "Resonantly driven nonlinear dynamics of soliton molecules in ultrafast fiber lasers," Adv. Photon. 7, 016005 (2025)
    Download Citation