[3] TAN T Y, GARDNER E E, TICE W K. Intrinsic gettering by oxide precipitate induced dislocations in Czochralski Si[J]. Applied Physics Letters, 1977, 30(4): 175-176.
[4] MATSUO H, BAIRAVA GANESH R, NAKANO S, et al. Thermodynamical analysis of oxygen incorporation from a quartz crucible during solidification of multicrystalline silicon for solar cell[J]. Journal of Crystal Growth, 2008, 310(22): 4666-4671.
[6] YANG D R, LI D S, WANG L R, et al. Oxygen in Czochralski silicon used for solar cells[J]. Solar Energy Materials and Solar Cells, 2002, 72(1/2/3/4): 133-138.
[7] TENG Y Y, CHEN J C, LU C W, et al. Numerical simulation of the effect of heater position on the oxygen concentration in the CZ silicon crystal growth process[J]. International Journal of Photoenergy, 2012, 2012: 1-6.
[8] NGUYEN T H T, CHEN J C. Effects of different cusp magnetic ratios and crucible rotation conditions on oxygen transport and point defect formation during CZ silicon crystal growth[J]. Materials Science in Semiconductor Processing, 2021, 128: 105758.
[9] POPESCU A, BELLMANN M P, VIZMAN D. Effect of crucible rotation on the temperature and oxygen distributions in Czochralski grown silicon for photovoltaic applications[J]. CrystEngComm, 2021, 23(2): 308-316.
[10] HIRSCH A, SCHULZE M, STURM F, et al. Factors influencing the gas bubble evolution and the cristobalite formation in quartz glass CZ crucibles for Czochralski growth of silicon crystals[J]. Journal of Crystal Growth, 2021, 570: 126231.
[11] GAO B, KAKIMOTO K. Global simulation of coupled carbon and oxygen transport in a Czochralski furnace for silicon crystal growth[J]. Journal of Crystal Growth, 2010, 312(20): 2972-2976.
[13] LIU X, HARADA H, MIYAMURA Y, et al. Transient global modeling for the pulling process of Czochralski silicon crystal growth. II. Investigation on segregation of oxygen and carbon[J]. Journal of Crystal Growth, 2020, 532: 125404.
[14] CHEN J C, CHIANG P Y, NGUYEN T H T, et al. Numerical simulation of the oxygen concentration distribution in silicon melt for different crystal lengths during Czochralski growth with a transverse magnetic field[J]. Journal of Crystal Growth, 2016, 452: 6-11.
[15] SMIRNOV A D, KALAEV V V. Development of oxygen transport model in Czochralski growth of silicon crystals[J]. Journal of Crystal Growth, 2008, 310(12): 2970-2976.
[16] CHEN J C, CHIANG P Y, CHANG C H, et al. Three-dimensional numerical simulation of flow, thermal and oxygen distributions for a Czochralski silicon growth with in a transverse magnetic field[J]. Journal of Crystal Growth, 2014, 401: 813-819.
[17] CHEN J C, TENG Y Y, WUN W T, et al. Numerical simulation of oxygen transport during the CZ silicon crystal growth process[J]. Journal of Crystal Growth, 2011, 318(1): 318-323.
[18] NGUYEN T H T, CHEN J C, HU C, et al. Effects of crystal-crucible iso-rotation and a balanced/unbalanced cusp magnetic field on the heat, flow, and oxygen transport in a Czochralski silicon melt[J]. Journal of Crystal Growth, 2020, 531: 125373.
[19] GENG X, WU X B, GUO Z Y. Numerical simulation of combined flow in Czochralski crystal growth[J]. Journal of Crystal Growth, 1997, 179(1/2): 309-319.
[21] LI T, ZHAO L, LV G Q, et al. Thermodynamic analysis of dissolved oxygen in a silicon melt and the effect of processing parameters on the oxygen distribution in single-crystal silicon during Czochralski growth[J]. Silicon, 2023, 15(2): 1049-1062.