• Journal of Atmospheric and Environmental Optics
  • Vol. 10, Issue 2, 174 (2015)
Cong-ming DAI1、*, Dong LIU1、2, and He-li WEI1、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2015.02.010 Cite this Article
    DAI Cong-ming, LIU Dong, WEI He-li. Advances in Infrared Spectral Remote Sensing of Upper Atmosphere[J]. Journal of Atmospheric and Environmental Optics, 2015, 10(2): 174 Copy Citation Text show less
    References

    [1] Ree M H. Physics and Chemistry of the Upper Atmosphere[M]. Cambridge: Cambridge University Press, 1989.

    [2] López-Puertas M, Taylor F W. Non-LTE Radiative Transfer in the Atmosphere[M]. Singapore: Word Scientific Publishing Co. Pte. Ltd., 2003.

    [3] Akmaev R A, Fomichev V I, Zhu X. Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere[J]. J. Atmos. Sol.-Terr. Phys., 2006, 68(17): 1879-1889.

    [4] Zhu X. Carbon dioxide 15 μm band cooling rates in the upper middle atmosphere calculated by curtis matrix interpolation[J]. J. Atmos. Sci., 1990, 47(6): 755-774.

    [5] Mlynczak M, Martin-Torres F J, Russell J, et al. The natural thermostat of nitric oxide emission at 5.3 μm in the thermosphere observed during the solar storms of April 2002[J]. Geophys. Res. Lett., 2003, 30(21): SSC 2.1-SSC 2.5.

    [6] Mertens C J, Mlynczak M G, López-Puertas M, et al. Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15 μm Earth limb emission under non-LTE conditions[J]. Geophys. Res. Lett., 2001, 28(7): 1391-1394.

    [7] Mlynczak M G, Zhou D K. Kinetic and spectroscopic requirements for the measurement of mesospheric ozone at 9.6 μm under non-LTE conditions[J]. Geophys. Res. Lett., 1998, 25(5): 639-642.

    [8] Chen Hongbin. An overview of the space-based observations for upper atmospheric research[J]. Advances in Earth Science, 2009, 24(3): 229-241(in Chinese).

    [9] Zhang Xiaofang, Yan Wei. Advances in studies on the exploration of the middle and upper atmosphere[J]. Scientia Meteorologica Sinica, 2007, 27(4): 457-463(in Chinese).

    [10] Sharma R D, Healey R J. Earthlimb emission analysis of spectral infrared rocket experiment(SPIRE) datas at 2.7 μm-a 10 year update[C]. SPIE, 1540, Box 10, Bellingham, WA 98227, 1991.

    [11] Degges T C, D’Agti A P. A user’s guide to the AFGL/Visidyne high altitude infrared radiance model[R]. AFGL-TR-85-0015, 1985, ADA161432.

    [12] Stair Jr A T, Sharma R D, Nadile R M, et al. Observations of limb radiance with Cryogenic Spectral Infared Rocket Experiment[J]. J. Geophysi. Res.: Space Phys., 1985, 90(A10): 9763-9775.

    [13] Baker K D, Bake D J r, Ulwick J C, et al. Rocketborne measurement of an infared enhancement associated with a gright auroral breakup[R]. Air Force Geophysics Lab Hanscom AFB MA, 1977, AFGL-TR-77-0157, ADA046474.

    [14] Stair Jr A T, Ulwick J C, Baker K D, et al. Rocketborne Observations of Atmospheric Infrared Emissions in the Auroral Region[M]// Atmospheres of Earth and the Planets, Springer Netherlands, 1975: 335-346.

    [15] Degges T C. Vibrationally excited nitric oxide in the upper atmosphere[J]. Appl. Opt., 1971, 10(8): 1856-1860.

    [16] Espy P J, Harris C R, Steed A J, et al. Rocketborne interferometer measurement of infared auroral spectra[J]. Planet. Space. Sci., 1988, 36(6): 543-551.

    [17] Stair Jr A T, Pritchard J, Coleman I, et al. Rocketborne cryogenic (10 K) high-resolution interferometer spectrometer flight HIRIS: auroral and atmospheric IR emission spectra[J]. Appl. Opt., 1983, 22(7): 1056-1069.

    [18] Adler-Golden S M. Analysis of H2 O infrared radiance measured during the ELC-1 Rocket Experiment[R]. Space Science Instrumentation, 1992, PL-TR-92-2136.

    [19] Adler-Golden S M, Matthew M W, Smith D R. Upper atmospheric infared radiance from CO2 and NO observed during the SPIRIT 1 Rocket Experiment[J]. J. Geophys. Res.: Space Phys., 1991, 96(A7): 11319-11329.

    [20] Kemp J C, Huppi E R. SPIRIT II mission overview[C]. Proc. SPIE, 1993, 2019: 300-311.

    [21] Stair Jr A T, Sharma R D, Nadile R M, et al. Observation of limb radiance with Cryogenic Spectral Infrared Rocket Experiment[J]. J. Geophys. Res., 1985, 90(A10): 9763-9775.

    [22] Wise J O, Smith D R, Wheeler N B, et al. Overview and summary of results and significant findings from the CIRRIS-1A experiment[J]. J. Spacecraft Rockets, 2001, 38(3): 297-322.

    [23] Adler-Golden S, Smith D R, Vail J, et al. Simulations of mesospheric and thermospheric IR radiance measured in the CIRRIS-1A shuttle experiment[J]. J. Atmos. Sol.-Terr. Phy., 1999, 61(18): 1397-1410.

    [24] Wintersteiner P P, Picard R H, Sharma R D, et al. Line-by-line radiative excitation model for the non-equilibrium atmosphere: Application to CO2 15 μm emission[J]. J. Geophys. Res., 1992, 97(D16): 18083-18117.

    [25] Sharma R D, Ratkowshi A J, Sunderg R L, et al. Description of SHARC, The Strategic High-Altitude Radiance Code[R]. GL-TR-89-0229, 1989, ADA213806.

    [26] Gille J C, Russell J M. The limb infrared monitor of the stratosphere: Experiment description, performance, and results[J]. J. Geophys. Res., 1984, 89(D4): 5125-5140.

    [27] Rodgers C D, Jones R L, Barnett J J. Retrieval of temperature and composition from Nimbus 7 SAMS measurement[J]. J. Geophys. Res., 1984, 89(D4): 5280-5286.

    [28] O’Neil R R, Gardiner H A B, Gibson J J, et al. Midcourse space experiment (MSX):overview of mid-wave infrared atmospheric gravity waves in earth limb and terrestrial backgrounds[J]. EO Propagation, Signature and System Performance Under Adverse Meteorological Conditions Considering Out-of-Area Operations, 1998.

    [29] O’Neil R.R. Gardiner H A B, Gibson J J. MSX: Remotely sensed observations of atmospheric infrared radiance and spatial structure[C]. Proc. SPIE, 2002, 4539: 446-453.

    [30] Roche A E, Kumer J B. Cryogenic limb array etalon spectrometer (CLAES): experiment overview[C]. Proc. SPIE 0973, Cryogenic Optical Systems and Instruments III.

    [31] Kaye J A, Kumer J B. Nonlocal thermodynamic equilibrium effects in stratospheric NO and implications for infared remote sensing[J]. Appl. Opt., 1987, 26(22): 4747-4754.

    [32] Grossmann K U, Gusev O, Kaufmann M, et al. A review of the scientific results from the CRISTA missions[J]. Adv. Space Res., 2004, 34(8): 1715-1721.

    [33] Xu J, Liu H L, Yuan W, et al. Mesopause structure from thermosphere, ionosphere, mesosphere, energetic, and dynamics(TIMED)/sounding of the atmosphere using broadband emission radiometry(SABER) observations[J]. J. Geophys. Res., 2007, 112(D9): D09102.1- D09102.11.

    [34] Gao Hong, Xu Jiyao, Chen Guangming, et al. Global distributions of OH and O2 (1.27 μm) nightglow emissions observed by TIMED satellite[J]. Scientia Sinica Technologica, 2011, 41(3): 374-384(in Chinese).

    [35] Preusse P, Ern M, Eckermann S D, et al. Tropopause to mesopause gravity waves in August: Measurement and modeling[J]. J. Atm. Solar Terr. Phys, 2006, 68(15): 1730-1751.

    [36] Mlynczak M G, Martin-Torres F J, Russell J M, et al. The natural thermostat of nitric oxide emission at 5.3 μm in the thermosphere observed during the solar storms of April 2002[J]. Geophys. Res. Lett., 2003, 30(21): SSC 2-1- SSC 2-5.

    [37] Feofilov A G, Kutepov A A. Infrared radiation in the mesosphere and lower thermosphere: energetic effects and remote sensing[J]. Surv. Geophys., 2012, 33(6): 1231-1280.

    [38] Fischer H, Birk M, Blom C, et al. MIPAS: an instrument for atmospheric and climate research[J]. Atmos. Chem. Phys., 2008, 8(8): 2151-2188.

    [39] Stiller G P, von Clarmann T, Funke B, et al. Sensitivity of trace gas abundances retrievals from infrared limb emission spectra to simplifying approximations in radiative transfer modeling[J]. J. Quant. Spectrosc. Radiat. Transfer, 2002, 72(3): 249-280.

    [40] Funke B, López-Puertas M, Garcí-Comas M. GRANADA: a generic radiative tansfer and non-LTE population algorithm[J]. J. Quant. Spectrosc. Radiat. Transfer, 2012, 113(14): 1771-1817.

    [41] Garca-Comas M, Funke B, López-Puertas M, et al. On the quality of MIPAS kinetic temperature in the middle atmosphere[J]. Atmos. Chem. Phys., 2012, 12(13): 6009-6039.

    [42] Farmer C B. High resolution infrared spectroscopy of the Sun and the Earth’s atmosphere from space[J]. Microchim. Acta, 1987, 93(1-6): 189-214.

    [43] Gunson M R, Abbas M M, Abrams M C, et al. The atmospheric trace molecule spectroscopy (ATMOS) experiment: Deployment on the ATLAS space shuttle missions[J]. Geophys. Res. Lett., 1996, 23(17): 2333-2336.

    [44] Russell J M, Gordley L L, Park J H, et al. The halogen occultation experiment[J]. J. Geophy. Res., 1993, 98(D6): 10777-10797.

    [45] HALogen Occultation Experiment[OL]. http:// haloe.gats-inc.com/about/index.php.

    [46] Bernath P F, McElroy C T, Abrams M C, et al. Atmospheric chemistry experiment (ACE): mission overview[J]. Geophy. Res. Lett., 2005, 32(15): L15S01.1-L15S01.5.

    [47] Bernath P F. Atmospheric chemistry experiment (ACE): analytical chemistry from orbit[J]. Trends Anal. Chem., 2006, 25(7): 647-654.

    [48] ACD: Atmospheric Chemistry Experiment[OL]. http://www.ace.uwaterloo.ca/index.html.

    DAI Cong-ming, LIU Dong, WEI He-li. Advances in Infrared Spectral Remote Sensing of Upper Atmosphere[J]. Journal of Atmospheric and Environmental Optics, 2015, 10(2): 174
    Download Citation