• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 4, 1404 (2022)
CHEN Bo1、*, WEI Zhonghua2, LI Bin2, WANG Zicheng1, and WANG Tengfei1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    CHEN Bo, WEI Zhonghua, LI Bin, WANG Zicheng, WANG Tengfei. Research and Application Progress of Silicon Nitride Ceramics in Four Major Fields[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1404 Copy Citation Text show less
    References

    [1] COLLINS J F, GERBY R W. New refractory uses for silicon nitride reported[J]. JOM, 1955, 7(5): 612-615.

    [3] FNFSCHILLING S, FETT T, HOFFMANN M J, et al. Mechanisms of toughening in silicon nitrides: the roles of crack bridging and microstructure[J]. Acta Materialia, 2011, 59(10): 3978-3989.

    [9] PARK Y J, PARK M J, KIM J M, et al. Sintered reaction-bonded silicon nitrides with high thermal conductivity: the effect of the starting Si powder and Si3N4 diluents[J]. Journal of the European Ceramic Society, 2014, 34(5): 1105-1113.

    [11] ZIEGENBALG G, BREUEL U, EBRECHT E, et al. Synthesis of α-silicon nitride powder by gas-phase ammonolysis of CH3SiCl3[J]. Journal of the European Ceramic Society, 2001, 21(7): 947-958.

    [17] BERMUDO J, OSENDI M I. Study of AlN and Si3N4 powders synthesized by SHS reactions[J]. Ceramics International, 1999, 25(7): 607-612.

    [18] JIANG Y, WU L E, WANG P L, et al. Pretreatment and sintering of Si3N4 powder synthesized by the high-temperature self-propagation method[J]. Materials Research Bulletin, 2009, 44(1): 21-24.

    [20] PATTABHIRAMAN S, LEVESQUE G, KIM N H, et al. Uncertainty analysis for rolling contact fatigue failure probability of silicon nitride ball bearings[J]. International Journal of Solids and Structures, 2010, 47(18/19): 2543-2553.

    [27] Silicon nitride (CAS 12033-89-5) market research report 2014[R]. M2 Presswire, 2014.

    [28] WEI Q H, WANG C H, LI L, et al. Study on damp-proofand enhanced coating on porous silicon nitride surface by sealing[J].Rare Metal Materials and Engineering, 2012, 41(3): 278-281.

    [30] LYSENKO V, PRICHON S, REMAKI B, et al. Thermal isolation in microsystems with porous silicon[J]. Sensors and Actuators A: Physical, 2002, 99(1/2): 13-24.

    [33] PLUCKNETT K P, QUINLAN M, GARRIDO L, et al. Microstructural development in porous β-Si3N4 ceramics prepared with low volume RE2O3-MgO-(CaO) additions (RE=La, Nd, Y, Yb)[J]. Materials Science and Engineering: A, 2008, 489(1/2): 337-350.

    [34] DEVILLE S. Freeze-casting of porous ceramics: a review of current achievements and issues[J]. Advanced Engineering Materials, 2008, 10(3): 155-169.

    [37] DAZ A, HAMPSHIRE S. Characterisation of porous silicon nitride materials produced with starch[J]. Journal of the European Ceramic Society, 2004, 24(2): 413-419.

    [42] FUKASAWA T, DENG Z Y, ANDO M, et al. Synthesis of porous silicon nitride with unidirectionally aligned channels using freeze-drying process[J]. Journal of the American Ceramic Society, 2002, 85(9): 2151-2155.

    [43] KOETJE E L, SIMPSON F H, et al. Broadband high temperature radome apparatus: US, 4677443[P]. 1987-06-30.

    [45] JIANG G P, YANG J F, GAO J Q, et al. Porous silicon nitride ceramics prepared by extrusion using starch as binder[J]. Journal of the American Ceramic Society, 2008, 91(11): 3510-3516.

    [46] HAGGERTY J S, LIGHTFOOT A. Opportunities for enhancing the thermal conductivities of SiC and Si3N4 ceramics through improved processing[M]//Ceramic Engineering and Science Proceedings. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1995: 475-487.

    [47] HIROSAKI N, OGATA S, KOCER C, et al. Molecular dynamics calculation of the ideal thermal conductivity of single-crystal α- and β-Si3N4[J]. Physical Review B, 2002, 65(13): 134110.

    [48] DING S Q, ZENG Y P, JIANG D L. Oxidation bonding of porous silicon nitride ceramics with high strength and low dielectric constant[J]. Materials Letters, 2007, 61(11/12): 2277-2280.

    [49] LI Y S, KIM H N, WU H B, et al. Enhanced thermal conductivity in Si3N4 ceramic with the addition of Y2Si4N6C[J]. Journal of the American Ceramic Society, 2018, 101(9): 4128-4136.

    [50] FURUYA K, MUNAKATA F, MATSUO K, et al. Microstructural control of β-silicon nitride ceramics to improve thermal conductivity[J]. Journal of Thermal Analysis and Calorimetry, 2002, 69(3): 873-879.

    [51] ZHU X W, HAYASHI H, ZHOU Y, et al. Influence of additive composition on thermal and mechanical properties of β-Si3N4 ceramics[J]. Journal of Materials Research, 2004, 19(11): 3270-3278.

    [52] MIYAZAKI H, HIRAO K, YOSHIZAWA Y I. Effects of MgO addition on the microwave dielectric properties of high thermal-conductive silicon nitride ceramics sintered with ytterbia as sintering additives[J]. Journal of the European Ceramic Society, 2012, 32(12): 3297-3301.

    [53] KITAYAMA M, HIRAO K, TSUGE A, et al. Thermal conductivity of β-Si3N4: Ⅱ, effect of lattice oxygen[J]. Journal of the American Ceramic Society, 2004, 83(8): 1985-1992.

    [54] ZHOU Y, HYUGA H, KUSANO D, et al. A tough silicon nitride ceramic with high thermal conductivity[J]. Advanced Materials (Deerfield Beach, Fla), 2011, 23(39): 4563-4567.

    [56] ZHU X W, ZHOU Y, HIRAO K, et al. Processing and thermal conductivity of sintered reaction-bonded silicon nitride. I: effect of Si powder characteristics[J]. Journal of the American Ceramic Society, 2006, 89(11): 3331-3339.

    [57] ZHU X W, ZHOU Y, HIRAO K, et al. Processing and thermal conductivity of sintered reaction-bonded silicon nitride: (Ⅱ) effects of magnesium compound and yttria additives[J]. Journal of the American Ceramic Society, 2007, 90(6): 1684-1692.

    [58] ZHU X W, SAKKA Y, ZHOU Y, et al. A strategy for fabricating textured silicon nitride with enhanced thermal conductivity[J]. Journal of the European Ceramic Society, 2014, 34(10): 2585-2589.

    [59] HAYASHI H, HIRAO K, TORIYAMA M, et al. MgSiN2 addition as a means of increasing the thermal conductivity of β-silicon nitride[J]. Journal of the American Ceramic Society, 2001, 84(12): 3060-3062.

    [61] WILLS R R, HOLMQUIST S, WIMMER J M, et al. Phase relationships in the system Si3N4-Y2O3-SiO2[J]. Journal of Materials Science, 1976, 11(7): 1305-1309.

    [62] ABE O. Sintering process of Y2O3 and Al2O3-doped Si3N4[J]. Journal of Materials Science, 1990, 25(9): 4018-4026.

    [63] WANG B, YANG J, GUO R, et al. Microstructure characterization of hot-pressed β-silicon nitride containing β-Si3N4 seeds[J]. Materials Characterization, 2009, 60(8): 894-899.

    [65] KITAYAMA M, HIRAO K, WATARI K, et al. Thermal conductivity of β-Si3N4: iii, effect of rare-earth (RE = La, Nd, Gd, Y, Yb, and Sc) oxide additives[J]. Journal of the American Ceramic Society, 2004, 84(2): 353-58.

    [67] YANG C P, YE F, MA J, et al. Comparative study of fluoride and non-fluoride additives in high thermal conductive silicon nitride ceramics fabricated by spark plasma sintering and post-sintering heat treatment[J]. Ceramics International, 2018, 44(18): 23202-23207.

    [68] YANG C P, DING J J, MA J, et al. Microstructure tailoring of high thermal conductive silicon nitride through addition of nuclei with spark plasma sintering and post-sintering heat treatment[J]. Journal of Alloys and Compounds, 2019, 785: 89-95.

    [69] NEUMANN A, UNKEL C, WERRY C, et al. Prototype of a silicon nitride ceramic-based miniplate osteofixation system for the midface[J]. Otolaryngology-Head and Neck Surgery, 2006, 134(6): 923-930.

    [70] GORTH D J, PUCKETT S, ERCAN B, et al. Decreased bacteria activity on Si3N4 surfaces compared with PEEK or titanium[J]. International Journal of Nanomedicine, 2012, 7: 4829-4840.

    [71] PEZZOTTI G, BOCK R M, MCENTIRE B J, et al. Silicon nitride bioceramics induce chemically driven lysis in porphyromonas gingivalis[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2016, 32(12): 3024-3035.

    [72] WEBSTER T J, PATEL A A, RAHAMAN M N, et al. Anti-infective and osteointegration properties of silicon nitride, poly(ether ether ketone), and titanium implants[J]. Acta Biomaterialia, 2012, 8(12): 4447-4454.

    [73] SOHRABI A, HOLLAND C, KUE R, et al. Proinflammatory cytokine expression of IL-1beta and TNF-alpha by human osteoblast-like MG-63 cells upon exposure to silicon nitride in vitro[J]. Journal of Biomedical Materials Research, 2000, 50(1): 43-49.

    [74] KUE R, SOHRABI A, NAGLE D, et al. Enhanced proliferation and osteocalcin production by human osteoblast-like MG63 cells on silicon nitride ceramic discs[J]. Biomaterials, 1999, 20(13): 1195-1201.

    [75] HOWLETT C R, MCCARTNEY E, CHING W. The effect of silicon nitride ceramic on rabbit skeletal cells and tissue. An in vitro and in vivo investigation[J]. Clinical Orthopaedics and Related Research, 1989(244): 293-304.

    [76] NEUMANN A, RESKE T, HELD M, et al. Comparative investigation of the biocompatibility of various silicon nitride ceramic qualities in vitro[J]. Journal of Materials Science Materials in Medicine, 2004, 15(10): 1135-1140.

    [77] BERNERO J P, KHANDKAR A C, LAKSHMINARAAYANAN R, et al. Knee prosthesis with ceramic tibial component: US7776085[P]. 2010-08-17.

    [78] RAHAMAN M N, YAO A H, BAL B S, et al. Ceramics for prosthetic hip and knee joint replacement[J]. Journal of the American Ceramic Society, 2007, 90(7): 1965-1988.

    [79] PEZZOTTI G, OHGITANI E, SHIN-YA M, et al. Instantaneous “catch-and-kill” inactivation of SARS-CoV-2 by nitride ceramics[J]. Clinical and Translational Medicine, 2020, 10(6): e212.

    CHEN Bo, WEI Zhonghua, LI Bin, WANG Zicheng, WANG Tengfei. Research and Application Progress of Silicon Nitride Ceramics in Four Major Fields[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1404
    Download Citation