• High Power Laser and Particle Beams
  • Vol. 31, Issue 6, 62001 (2019)
Yang Chen1,2, Fan Zhengfeng1,3, Liu Jie1,3, Zhang Cunbo1..., Yu Chengxin1 and Ren Guoli1|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.11884/hplpb201931.180339 Cite this Article
    Yang Chen, Fan Zhengfeng, Liu Jie, Zhang Cunbo, Yu Chengxin, Ren Guoli. Parameter spaces of laser indirect-driven target by theoretic scaling laws[J]. High Power Laser and Particle Beams, 2019, 31(6): 62001 Copy Citation Text show less
    References

    [1] Pfalzner S.An introduction to inertial confinement fusion[M].New York: Taylor & Francis Group LLC, 2006.

    [2] Atzeni S, Meyer-ter-Vehn J.The Physics of inertial Fusion[M].New York: Oxford University Press, 2004.

    [3] Lindl J, Landen O, Edwards J, et al.Review of the national ignition campaign 2009-2012[J].Phys Plasmas, 2014,21: 020501.

    [4] Betti R, Hurricane O A.Inertial-confinement fusion with lasers[J].Nat Phys, 2016,12(5): 435-448.

    [5] Lindl J D, Amendt P, Berger R L, et al.The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J].Phys Plasmas, 2004,11: 339.

    [6] Glenzer S H, Spears B K, Edwards M J, et al.First implosion experiments with cryogenic thermonuclear fuel on the National Ignition Facility[J].Plasma Phys Control Fusion, 2012,54: 045013.

    [7] Moses E I, Boyd R N, Remington B A, et al.The National Ignition Facility: Ushering in a new age for high energy density science[J].Phys Plasmas, 2009,16: 041006.

    [8] Le Pape S, Berzak Hopkins L F, Divol L, et al. Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility[J].Phys Rev Lett, 2018,120: 245003.

    [11] Regan S P, Epstein R, Hammel B A, et al.Hot-spot mix in ignition-scale implosions on the NIF[J].Phys Plasmas, 2012,19: 056307.

    [12] Ma T, Patel P K, Izumi N, et al.Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions[J].Phys Rev Lett , 2013,111: 085004.

    [13] Remington B A, Atherton L J, Benedetti L R, et al.Hydrodynamic instabilities and mix studies on NIF: Predictions, observations, and a path forward[J].J Phys Conf Ser , 2016,688: 012090.

    [15] Martinez D A, Smalyuk V A, MacPhee A G, et al.Hydro-instability growth of perturbation seeds from alternate capsule-support strategies in indirect-drive implosions on National Ignition Facility[J].Phys Plasmas, 2017,24: 102707.

    [16] Clark D S, Kritcher A L, Yi S A, et al.Capsule physics comparison of National Ignition Facility implosion designs using plastic, high density carbon, and beryllium ablators[J].Phys Plasmas, 2018,25: 032703.

    [17] Marinak M M, Kerbel G D, Gentile N A, et al.Three-dimensional HYDRA simulations of National Ignition Facility targets[J].Phys Plasmas, 2001,8: 2275.

    [19] Saillard Y.Acceleration and deceleration model of indirect drive ICF capsules[J].Nucl Fusion, 2006,46(12): 1017-1035.

    [20] Herrmann M C, Tabak M, Lindl J D.Ignition scaling laws and their application to capsule design[J].Phys Plasmas, 2001,8: 2296.

    [21] Ramis R, Meyer-Ter-Vehn J.MULTI-IFE - A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations[J].Comput Phys Commun , 2016,203: 226-237.

    [22] Olson R E, Rochau G A, Landen O L, et al.X-ray ablation rates in inertial confinement fusion capsule materials[J].Phys Plasmas, 2011,18: 032706.

    [23] Lu Y, Fan Z, Lu X, et al.The analysis of harmonic generation coefficients in the ablative Rayleigh-Taylor instability[J].Phys Plasmas, 2017,24: 102705.

    [24] Betti R, Goncharov V N, McCrory R L, et al.Growth rates of the ablative Rayleigh-Taylor instability in inertial confinement fusion[J].Phys Plasmas, 1998,5: 1446.

    [25] Nora R, Betti R, Anderson K S, et al.Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility[J].Phys Plasmas, 2014,21: 056316.

    [26] Betti R, Anderson K, Goncharov V N, et al.Deceleration phase of inertial confinement fusion implosions[J].Phys Plasmas, 2002,9: 2277.

    [27] Kemp A, Meyer-ter-Vehn J, Atzeni S.Stagnation pressure of imploding shells and ignition energy scaling of inertial confinement fusion targets[J].Phys Rev Lett, 2001,86(15): 3336-3339.

    [28] Hurricane O A, Callahan D A, Casey D T, et al.Fuel gain exceeding unity in an inertially confined fusion implosion[J].Nature, 2014,506: 7488.

    [29] Haan S W, Lindl J D, Callahan D A, et al.Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility[J].Phys Plasmas, 2011,18: 051001.

    Yang Chen, Fan Zhengfeng, Liu Jie, Zhang Cunbo, Yu Chengxin, Ren Guoli. Parameter spaces of laser indirect-driven target by theoretic scaling laws[J]. High Power Laser and Particle Beams, 2019, 31(6): 62001
    Download Citation