• Electronics Optics & Control
  • Vol. 23, Issue 10, 1 (2016)
LIU Shi-jian1 and JIN Lu2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1671-637x.2016.10.001 Cite this Article
    LIU Shi-jian, JIN Lu. A Survey on Algorithms for Automatic Target Recognition[J]. Electronics Optics & Control, 2016, 23(10): 1 Copy Citation Text show less
    References

    [1] BHANU B, DUDGEON D E, ZELNIO E G, et al. Guest editorial introduction to the special issue on automatic target detection and recognition[J]. IEEE Transactions on Image Proces-sing, 1997, 6(1):1-6.

    [3] VERLY J G, DELANOY R L, DUDGEON D E. Model-based system for automatic target recognition[C]//Orlando, FL. International Society for Optics and Photonics, 1991: 266-282.

    [7] GRAF A, SMOLA A J, BORER S. Classification in a normalized feature space using support vector machines[J]. IEEE Transactions on Neural Networks, 2003, 14(3): 597-605.

    [8] TAN Y, WANG J. A support vector machine with a hybrid kernel and minimal Vapnik-Chervonenkis dimen-sion[J]. IEEE Transactions on Know-ledge and Data Engineering, 2004, 16(4): 385-395.

    [9] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.

    [12] JAIN A K, DUIN R P W, MAO J. Statistical pattern recognition: a review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1): 4-37.

    [13] GILMORE J F. Knowledge-based target recognition system evolution[J]. Optical Engineering, 1991, 30(5): 557-570.

    [18] VERLY J G, DELANOY R L, DUD-GEON D E. Model-based system for automatic target recognition from forward-looking laser-radar imagery[J]. Optical Engineering, 1992, 31(12): 2540-2552.

    [21] QIN Q W, GAO K, NI G Q. Image fusion and its real-time processing in dual-band infrared night vision system[C]//Proceedings of SPIE, The International Society for Optical Engineering 7156. doi: 10. 1117/ 12. 807341.

    [23] VAPNIK V. The nature of statistical learning theory[M]. Berlin:Springer Science & Business Media, 2013.

    [24] LIN C F, WANG S D. Fuzzy support vector machines[J]. IEEE Transac-tions on Neural Networks, 2002, 13(2): 464-471.

    [25] LIN C F, WANG S D. Fuzzy support vector machines with automatic membership setting[C]//Support Vector Machines: Theory and Applications, 2005: 233-254.

    [26] MANGASARIAN O L, MUSICANT D R. Data discrimination via nonlinear generalized support vector machines[M]. New York:Springer US, 2001: 233-254.

    [27] SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300.

    [28] LEE Y J, MANGASARIAN O L. RSVM: reduced support vector machines[C]//SDM, 2001: 325-361.

    [29] CHANG C C, LIN C J. LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology(TI-ST). doi: 10. 1145/1961189. 1961199.

    [30] ZHANG L, LIN F, ZHANG B. Support vector machine learning for image retrieval[C]//International Conference on Image Processing, IEEE, 2001: 721-724.

    [31] TONG S, CHANG E. Support vector machine active learning for image retrieval[C]//Proceedings of the 9th ACM International Conference on Multimedia, 2001: 107-118.

    [32] MICHEL P, EL KALIOUBY R. Real time facial expression recognition in video using support vector machines[C]//Proceedings of the 5th International Conference on Multi-modal Interfaces, 2003: 258-264.

    [33] KOTSIA I, PITAS I. Facial expression recognition in image sequen-ces using geometric deformation features and support vector machines[J]. IEEE Transactions on Image Processing, 2007, 16(1): 172-187.

    [34] BAHLMANN C, HAASDONK B, BURKHARDT H. Online handwri-ting recognition with support vector machines-a kernel approach[C]//The 8th International Workshop on Frontiers in Handwriting Recognition, IEEE, 2002: 49-54.

    [35] CHEN G Y, BHATTACHARYA P. Function dot product kernels for support vector machine[C]//The 18th International Conference on Pattern Recognition, IEEE, 2006: 614-617.

    [36] KOHONEN T. Self-organization and associative memory[M]. Berlin:Sprin-ger Science & Business Media, 2012.

    [37] HOPFIELD J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences, 1982, 79(8): 2554-2558.

    [38] ACKLEY D H, HINTON G E, SEJ-NOWSKI T J. A learning algorithm for Boltzmann machines[J]. Cognitive Science, 1985, 9(1): 147-169.

    [39] HINTON G E, SEJNOWSKI T J. Learning and releaming in Boltz-mann machines[M]. Cambridge: MIT Press, 1986:282-317.

    [40] ZHANG Q, BENVENISTE A. Wa-velet networks[J]. IEEE Transactions on Neural Networks, 1992, 3(6): 889-898.

    [41] SPECHT D F. Probabilistic neural networks[J]. Neural Networks, 1990, 3(1): 109-118.

    [42] FUKUSHIMA K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics, 1980, 36(4): 193-202.

    [43] W?HLER C, ANLAUF J K. A time delay neural network algorithm for estimating image-pattern shape and motion[J]. Image and Vision Computing, 1999, 17(3): 281-294.

    [44] DAHL G E, YU D, DENG L, et al. Large vocabulary continuous speech recognition with context-dependent DBN-HMMs[C]//International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2011: 4688-4691.

    [45] MOHAMED A, SAINATH T N, DAHL G, et al. Deep belief networks using discriminative features for phone recognition[C]//International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2011: 5060-5063.

    [46] SERMANET P, EIGEN D, ZHANG X, et al. Overfeat: integrated recognition, localization and detection using convolutional networks[EB/OL]. (2014-02-26)[2016-03-30]. http: //101. 96. 8. 164/arxiv. org/pdf/ 1312. 6229. pdf.

    [47] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-20)[2016-03-30]. http: //101. 96. 8. 164/arxiv. org/pdf/1409. 1556v6. pdf.

    [48] WANG W, OOI B C, YANG X, et al. Effective multi-modal retrieval based on stacked auto-encoders[J]. Proceedings of the VLDB Endowment, 2014, 7(8): 649-660.

    [49] ROSS T D, WESTERKAMP L A, ZELNIO E G, et al. Extensibility and other model-based ATR evaluation concepts[C]//International Society for Optics and Photonics, 1997: 213-222.

    [50] MOHD M A. Performance characterization and sensitivity analysis of ATR algorithms to scene distortions[C]//Optical Engineering and Photonics in Aerospace Sensing. International Society for Optics and Photonics, 1993: 203-214.

    [51] LITHOPOULOS E, BENDER E R, BRONSKILL J F, et al. Algorithm evaluation for an infrared target-detection test bed[C]//International Society for Optics and Photonics, 1990: 58-65.

    [52] NASR H N, BAZAKOS M E. Automatic evaluation and adaptation of automatic target recogition systems[C]//International Society for Optics and Photonics, 1990: 108-119.

    [53] JAEGER U E, MAIER-HERBUR-GER H, STAHL C, et al. IR and SAR automatic target detection ben-chmarks[C]//Defense and Security. International Society for Optics and Photonics, 2004: 400-408.

    [54] SEIDEL H, STAHL C, BJERKELI F, et al. Assessment of COTS IR image simulation tools for ATR development[C]//Defense and Security. International Society for Optics and Photonics, 2005: 44-54.

    [55] SEIDEL H, STAHL C, ENSINGER W, et al. Assessment of model-based automatic target recognition on recorded and simulated infrared imagery[C]//SPIE Defense and Security Symposium. International Society for Optics and Photonics, 2008. doi: 10. 1117/12. 776663.

    [56] CHEN Z, ZHANG G. General quan-titative approach to performance eva-luation of automatic target recognition (ATR) systems[C]//Multispectral Image Processing and Pattern Re-cognition. International Society for Optics and Photonics, 2001: 179-184.

    CLP Journals

    [1] WEI Yiming, XU Yan, WANG Huifeng, WEI Chunmiao. Super-Resolution Reconstruction of Images Based on Multi-scale and Residual Network[J]. Electronics Optics & Control, 2022, 29(7): 102