• Photonics Research
  • Vol. 13, Issue 2, 257 (2025)
Kun Jiang, Xiquan Jiang, Rui Wu, Xinpeng Gao..., Shuangshuang Ding, Jingwen Ma, Zhihao Li and Shuyun Teng*|Show fewer author(s)
Author Affiliations
  • Shandong Provincial Key Laboratory of Optics and Photonic Device & School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
  • show less
    DOI: 10.1364/PRJ.538645 Cite this Article Set citation alerts
    Kun Jiang, Xiquan Jiang, Rui Wu, Xinpeng Gao, Shuangshuang Ding, Jingwen Ma, Zhihao Li, Shuyun Teng, "Generation of structural colors with wide gamut based on stretchable transmission metasurfaces," Photonics Res. 13, 257 (2025) Copy Citation Text show less
    References

    [1] S. Kinoshita, S. Yoshioka, J. Miyazaki. Physics of structural colors. Rep. Prog. Phys., 71, 076401(2008).

    [2] H. Shindy. Basics in colors, dyes and pigments chemistry: a review. Chem. Int., 2, 29-36(2016).

    [3] T. Lee, J. Jang, H. Jeong. Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications. Nano Converg., 5, 1(2018).

    [4] H. Jiang, B. Kaminska. Scalable inkjet-based structural color printing by molding transparent gratings on multilayer nanostructured surfaces. ACS Nano, 12, 3112-3125(2018).

    [5] C. I. Aguirre, E. Reguera, A. Stein. Tunable colors in opals and inverse opal photonic crystals. Adv. Funct. Mater., 20, 2565-2578(2010).

    [6] A. R. Parker, H. E. Townley. Biomimetics of photonic nanostructures. Nat. Nanotechnol., 2, 347-353(2007).

    [7] Y. Wu, Y. Chen, Q. Song. Dynamic structural colors based on all-dielectric Mie resonators. Adv. Opt. Mater., 9, 2002126(2021).

    [8] H. Chen, A. J. Taylor, N. Yu. A review of metasurfaces: physics and applications. Rep. Prog. Phys., 79, 076401(2016).

    [9] M. Khorasaninejad, W. Chen, R. C. Devlin. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [10] W. Chen, A. Y. Zhu, V. Sanjeev. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220-226(2018).

    [11] F. Ding, Z. Wang, S. He. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. ACS Nano, 9, 4111-4119(2015).

    [12] Z. Liu, Z. Li, Z. Liu. Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle. ACS Photonics, 4, 2061-2069(2017).

    [13] A. Y. Zhu, W. Chen, A. Zaidi. Giant intrinsic chiro-optical activity in planar dielectric nanostructures. Light Sci. Appl., 7, 17158(2018).

    [14] R. Wu, K. Jiang, X. Jiang. Metasurface-based circular polarizer with a controllable phase and its application in holographic imaging. Opt. Lett., 49, 774-777(2024).

    [15] S. Teng, Q. Zhang, H. Wang. Conversion between polarization states based on metasurface. Photonics Res., 7, 246-250(2019).

    [16] D. Liu, C. Zhou, P. Lu. Generation of vector beams with different polarization singularities based on metasurfaces. New J. Phys., 24, 043022(2022).

    [17] Z. Yue, P. Lu, J. Xu. Hybrid vector beams encoded by any orthogonal polarization states and their generation based on metasurfaces. New J. Phys., 25, 013018(2023).

    [18] Z. Xu, N. Li, Y. Dong. Metasurface-based subtractive color filter fabricated on a 12-inch glass wafer using a CMOS platform. Photonics Res., 9, 13-20(2021).

    [19] Q. Wei, B. Sain, Y. Wang. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces. Nano Lett., 19, 8964-8971(2019).

    [20] S. Zhang, C. L. Wong, S. Zeng. Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective. Nanophotonics, 10, 259-293(2020).

    [21] Y. Zheng, K. Chen, Z. Xu. Metasurface-assisted wireless communication with physical level information encryption. Adv. Sci., 9, 2204558(2022).

    [22] J. Chu, J. Wang, J. Wang. Structural-colored silk based on Ti–Si bilayer. Chin. Opt. Lett., 19, 051601(2021).

    [23] H. Liu, H. Yang, Y. Li. Switchable all-dielectric metasurfaces for full-color reflective display. Adv. Opt. Mater., 7, 1801639(2019).

    [24] I. Kim, J. Yun, T. Badloe. Structural color switching with a doped indium-gallium-zinc-oxide semiconductor. Photonics Res., 8, 1409-1415(2020).

    [25] W. Yang, G. Qu, F. Lai. Dynamic bifunctional metasurfaces for holography and color display. Adv. Mater., 33, 2101258(2021).

    [26] L. Liu, H. Wang, Y. Han. Color filtering and displaying based on hole array. Opt. Commun., 436, 96-100(2019).

    [27] L. Li, S. Jin, S. Hu. Optical metasurfaces for multiplex high-performance grating-type structural colors. Opt. Lett., 48, 1686-1689(2023).

    [28] W. Yang, S. Xiao, Q. Song. All-dielectric metasurface for high-performance structural color. Nat. Commun., 11, 1864(2020).

    [29] S. Sun, Z. Zhou, C. Zhang. All-dielectric full-color printing with TiO2 metasurfaces. ACS Nano, 11, 4445-4452(2017).

    [30] M. L. Tseng, J. Yang, M. Semmlinger. Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response. Nano Lett., 17, 6034-6039(2017).

    [31] C. Zhang, J. Jing, Y. Wu. Stretchable all-dielectric metasurfaces with polarization-insensitive and full-spectrum response. ACS Nano, 14, 1418-1426(2019).

    [32] Y. Xu, Y. Wang, Y. Yang. Stretchable structural colors with polarization dependence using lithium niobate metasurfaces. Opt. Express, 32, 6776-6790(2024).

    [33] V. R. Shrestha, S. S. Lee, E. S. Kim. Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array. Nano Lett., 14, 6672-6678(2014).

    [34] B. Lu, C. Xu, J. Liao. High-resolution plasmonic structural colors from nanohole arrays with bottom metal disks. Opt. Lett., 41, 1400-1403(2016).

    [35] H. Wang, X. Wang, C. Yan. Full color generation using silver tandem nanodisks. ACS Nano, 11, 4419-4427(2017).

    [36] E. D. Palik. Handbook of Optical Constants of Solids(1985).

    [37] X. Zhang, J. Qiu, X. Li. Complex refractive indices measurements of polymers in visible and near-infrared bands. Appl. Opt., 59, 2337-2344(2020).

    [38] F. Schneider, J. Draheim, R. Kamberger. Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS. Sens. Actuators A Phys., 151, 95-99(2009).

    Kun Jiang, Xiquan Jiang, Rui Wu, Xinpeng Gao, Shuangshuang Ding, Jingwen Ma, Zhihao Li, Shuyun Teng, "Generation of structural colors with wide gamut based on stretchable transmission metasurfaces," Photonics Res. 13, 257 (2025)
    Download Citation