• Chinese Journal of Lasers
  • Vol. 51, Issue 9, 0907001 (2024)
Kexiang Mou1、2, Zheng Tan1、3, Li Wang1、3, Xianping Sun1、3, Chaohui Ye1、2、3, and Xin Zhou1、2、3、*
Author Affiliations
  • 1National Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
  • 2Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/CJL231186 Cite this Article Set citation alerts
    Kexiang Mou, Zheng Tan, Li Wang, Xianping Sun, Chaohui Ye, Xin Zhou. Advancements in Nuclear Magnetic Resonance Research Based on Laser Pumped Atomic Sensors[J]. Chinese Journal of Lasers, 2024, 51(9): 0907001 Copy Citation Text show less
    References

    [1] Keeler J[M]. Understanding NMR spectroscopy(2010).

    [2] Appelt S, Häsing F W, Sieling U et al. Paths from weak to strong coupling in NMR[J]. Physical Review A, 81, 023420(2010).

    [3] Ledbetter M P, Budker D. Zero-field nuclear magnetic resonance[J]. Physics Today, 66, 44-49(2013).

    [4] Blanchard J W, Budker D. Zero‐to ultralow‐field NMR[J]. eMagRes, 5, 1395-1410(2016).

    [5] Johnson G A, Tian Y Q, Ashbrook D G et al. Merged magnetic resonance and light sheet microscopy of the whole mouse brain[J]. Proceedings of the National Academy of Sciences of the United States of America, 120, e2218617120(2023).

    [6] Blanchard J W, Ledbetter M P, Theis T et al. High-resolution zero-field NMR J-spectroscopy of aromatic compounds[J]. Journal of the American Chemical Society, 135, 3607-3612(2013).

    [7] Weitekamp D, Bielecki A, Zax D et al. Zero-field nuclear magnetic resonance[J]. Physical Review Letters, 50, 1807-1810(1983).

    [8] Clarke J. SQUID fundamentals[M]. SQUID sensors: fundamentals, fabrication, and applications, 1-62(1996).

    [9] Gruber A, Dräbenstedt A, Tietz C et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers[J]. Science, 276, 2012-2014(1997).

    [10] Schmelz M, Zakosarenko V, Chwala A et al. Thin-film based ultralow noise SQUID magnetometer[J]. IEEE Transactions on Applied Superconductivity, 26, 1600804(2016).

    [11] Simmonds M, Fertig W, Giffard R. Performance of a resonant input SQUID amplifier system[J]. IEEE Transactions on Magnetics, 15, 478-481(1979).

    [12] Dang H B, Maloof A C, Romalis M V. Ultra-high sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letters, 97, 151110(2010).

    [13] Allred J C, Lyman R N, Kornack T W et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation[J]. Physical Review Letters, 89, 130801(2002).

    [14] Nabeel A, Zhou H Y, Urbach E K et al. Quantum sensors for biomedical applications[J]. Nature Reviews. Physics, 5, 157-169(2023).

    [15] Mamin H J, Kim M, Sherwood M H et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor[J]. Science, 339, 557-560(2013).

    [16] Lovchinsky I, Sushkov A O, Urbach E et al. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic[J]. Science, 351, 836-841(2016).

    [17] Patrick W, Wolfgang F, Rainer K et al. Commercial gigahertz-class NMR magnets[J]. Superconductor Science and Technology, 35, 033001(2022).

    [18] Abragam A, Goldman M. Principles of dynamic nuclear polarisation[J]. Reports on Progress in Physics, 41, 395-467(1978).

    [19] Goodson B M. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials, and organisms[J]. Journal of Magnetic Resonance, 155, 157-216(2002).

    [20] Bowers C R, Weitekamp D P. Transformation of symmetrization order to nuclear-spin magnetization by chemical reaction and nuclear magnetic resonance[J]. Physical Review Letters, 57, 2645-2648(1986).

    [21] Walker T G, Happer W. Spin-exchange optical pumping of noble-gas nuclei[J]. Reviews of Modern Physics, 69, 629-642(1997).

    [22] Ardenkjaer-Larsen J H, Fridlund B, Gram A et al. Increase in signal-to-noise ratio of > 10, 000 times in liquid-state NMR[J]. Proceedings of the National Academy of Sciences of the United States of America, 100, 10158-10163(2003).

    [23] Braunschweiler L, Ernst R R. Coherence transfer by isotropic mixing: application to proton correlation spectroscopy[J]. Journal of Magnetic Resonance (1969), 53, 521-528(1983).

    [24] Norwood T J. Multiple-quantum NMR methods[J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 24, 295-375(1992).

    [25] Xu S, Harel E, Michalak D J et al. Flow in porous metallic materials: a magnetic resonance imaging study[J]. Journal of Magnetic Resonance Imaging, 28, 1299-1302(2008).

    [26] Hu Y N, Iwata G Z, Mohammadi M et al. Sensitive magnetometry reveals inhomogeneities in charge storage and weak transient internal currents in Li-ion cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 117, 10667-10672(2020).

    [27] Savukov I M, Grosz A, Haji-Sheikh M J, Mukhopadhyay S C. Spin exchange relaxation free (SERF) magnetometers[M]. High sensitivity magnetometers. Smart sensors, measurement and instrumentation, 19, 451-491(2017).

    [28] Budker D, Romalis M. Optical magnetometry[J]. Nature Physics, 3, 227-234(2007).

    [29] Wang K, Ma D Y, Li S R et al. Simultaneous in-situ compensation method of residual magnetic fields for the dual-beam SERF atomic magnetometer[J]. Sensors and Actuators A: Physical, 349, 114055(2023).

    [30] Li J D, Quan W, Zhou B Q et al. SERF atomic magnetometer-recent advances and applications: a review[J]. IEEE Sensors Journal, 18, 8198-8207(2018).

    [31] Seltzer S J[M]. Developments in alkali-metal atomic magnetometry, 160-185(2008).

    [32] Liu G B, Li X F, Sun X P et al. Ultralow field NMR spectrometer with an atomic magnetometer near room temperature[J]. Journal of Magnetic Resonance, 237, 158-163(2013).

    [33] Fitzgerald R. New atomic magnetometer achieves subfemtotesla sensitivity[J]. Physics Today, 56, 21-24(2003).

    [34] Zhou X, Liu G B, Sun X P et al. A NMR device and measurement method based on laser atomic magnetometer[P].

    [35] Zhou X, Wang X F, Sun X P et al. A positioning sampling device and method for low field magnetic resonance systems[P].

    [36] Xu S J, Lowery T L, Budker D et al. Atomic magnetic gradiometer for room temperature high sensitivity magnetic field detection[P].

    [37] Liu Z D, Zhao M X, Wu C J et al. NMR study of low-pressure 129Xe gas[J]. Chemical Physics Letters, 194, 440-445(1992).

    [38] Ledbetter M P, Crawford C W, Pines A et al. Optical detection of NMR J-spectra at zero magnetic field[J]. Journal of Magnetic Resonance, 199, 25-29(2009).

    [39] Jiang M, Bian J, Li Q et al. Zero- to ultralow-field nuclear magnetic resonance and its applications[J]. Fundamental Research, 1, 68-84(2021).

    [40] Theis T, Blanchard J W, Butler M C et al. Chemical analysis using J-coupling multiplets in zero-field NMR[J]. Chemical Physics Letters, 580, 160-165(2013).

    [41] Butler M C, Ledbetter M P, Theis T et al. Multiplets at zero magnetic field: the geometry of zero-field NMR[J]. The Journal of Chemical Physics, 138, 184202(2013).

    [42] Ledbetter M P, Theis T, Blanchard J W et al. Near-zero-field nuclear magnetic resonance[J]. Physical Review Letters, 107, 107601(2011).

    [43] Appelt S, Häsing F W, Kühn H et al. Phenomena in J-coupled nuclear magnetic resonance spectroscopy in low magnetic fields[J]. Physical Review A, 76, 023420(2007).

    [44] Kovtunov K V, Pokochueva E V, Salnikov O G et al. Hyperpolarized NMR spectroscopy: d-DNP, PHIP, and SABRE techniques[J]. Chemistry, an Asian Journal, 13, 1857-1871(2018).

    [45] Sze K H, Wu Q L, Tse H S, Zhu G et al. Dynamic nuclear polarization: new methodology and applications[M]. NMR of proteins and small biomolecules. Topics in current chemistry, 326, 215-242(2011).

    [46] Bowers C R. Sensitivity enhancement utilizing parahydrogen[J]. Encyclopedia of Nuclear Magnetic Resonance, 9, 750-770(2002).

    [48] Put P, Pustelny S, Budker D et al. Zero- to ultralow-field NMR spectroscopy of small biomolecules[J]. Analytical Chemistry, 93, 3226-3232(2021).

    [49] Blanchard J W, Wu T, Eills J et al. Zero- to ultralow-field nuclear magnetic resonance J-spectroscopy with commercial atomic magnetometers[J]. Journal of Magnetic Resonance, 314, 106723(2020).

    [50] Van Dyke E T, Eills J, Picazo-Frutos R et al. Relayed hyperpolarization for zero-field nuclear magnetic resonance[J]. Science Advances, 8, eabp9242(2022).

    [51] Blanchard J W, Barbara R, Suslick B A et al. Towards large-scale steady-state enhanced nuclear magnetization with in situ detection[J]. Magnetic Resonance in Chemistry: MRC, 59, 1208-1215(2021).

    [52] Picazo-Frutos R, Stern Q, Blanchard J W et al. Zero- to ultralow-field nuclear magnetic resonance enhanced with dissolution dynamic nuclear polarization[J]. Analytical Chemistry, 95, 720-729(2022).

    [53] Yashchuk V V, Granwehr J, Kimball D F et al. Hyperpolarized xenon nuclear spins detected by optical atomic magnetometry[J]. Physical Review Letters, 93, 160801(2004).

    [54] Zhou X, Tan Z, Sun X P et al. A near zero field magnetic resonance spectroscopy device and measurement method[P].

    [55] Jiménez-Martínez R, Kennedy D J, Rosenbluh M et al. Optical hyperpolarization and NMR detection of 129Xe on a microfluidic chip[J]. Nature Communications, 5, 3908(2014).

    [56] Kennedy D J, Seltzer S J, Jiménez-Martínez R et al. An optimized microfabricated platform for the optical generation and detection of hyperpolarized 129Xe[J]. Scientific Reports, 7, 43994(2017).

    [57] Burueva D B, Eills J, Blanchard J W et al. Chemical reaction monitoring using zero‐field nuclear magnetic resonance enables study of heterogeneous samples in metal containers[J]. Angewandte Chemie-International Edition, 59, 17026-17032(2020).

    [58] Jiang M, Xu W J, Li Q et al. Interference in atomic magnetometry[J]. Advanced Quantum Technologies, 3, 2000078(2020).

    [59] Alcicek S, Put P, Kontul V et al. Zero-field NMR J-spectroscopy of organophosphorus compounds[J]. The Journal of Physical Chemistry Letters, 12, 787-792(2021).

    [60] Alcicek S, Put P, Barskiy D et al. Zero-field NMR of urea: spin-topology engineering by chemical exchange[J]. The Journal of Physical Chemistry Letters, 12, 10671-10676(2021).

    [61] Kurian K K G, Madhu P K, Rajalakshmi G. Solid-state NMR signals at zero-to-ultra-low-field[J]. Journal of Magnetic Resonance Open, 10, 100049(2022).

    [62] Alcicek S, Put P, Kubrak A et al. Zero- to low-field relaxometry of chemical and biological fluids[J]. Communications Chemistry, 6, 165(2023).

    [63] Sjolander T F, Tayler M C D, Kentner A et al. 13C-decoupled J-coupling spectroscopy using two-dimensional nuclear magnetic resonance at zero-field[J]. The Journal of Physical Chemistry Letters, 8, 1512-1516(2017).

    [64] Sjolander T F, Blanchard J W, Budker D et al. Two-dimensional single- and multiple-quantum correlation spectroscopy in zero-field nuclear magnetic resonance[J]. Journal of Magnetic Resonance, 318, 106781(2020).

    [65] Zhukov I V, Kiryutin A S, Yurkovskaya A V et al. Correlation of high-field and zero- to ultralow-field NMR properties using 2D spectroscopy[J]. The Journal of Chemical Physics, 154, 144201(2021).

    [66] Mouloudakis K, Bodenstedt S, Azagra M et al. Real-time polarimetry of hyperpolarized 13C nuclear spins using an atomic magnetometer[J]. The Journal of Physical Chemistry Letters, 14, 1192-1197(2023).

    [67] Griffith W C, Knappe S, Kitching J. Femtotesla atomic magnetometry in a microfabricated vapor cell[J]. Optics Express, 18, 27167-27172(2010).

    [68] Wyllie R, Kauer M, Smetana G S et al. Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array[J]. Physics in Medicine and Biology, 57, 2619-2632(2012).

    [69] Fang J C, Wang T, Zhang H et al. Optimizations of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping[J]. The Review of Scientific Instruments, 85, 123104(2014).

    [70] Fang J C, Li R J, Duan L H et al. Study of the operation temperature in the spin-exchange relaxation free magnetometer[J]. Review of Scientific Instruments, 86, 073116(2015).

    [71] Chen B T, Jiang M, Ji Y L et al. Spin-exchange relaxation free atomic magnetometer for zero-field nuclear magnetic resonance detection[J]. Chinese Journal of Lasers, 44, 1004001(2017).

    [72] Wang Y X, Jin G, Tang J J et al. Optimized gas pressure of an Rb vapor cell in a single-beam SERF magnetometer[J]. Optics Express, 30, 336-348(2022).

    [73] Tian M N, Quan W, Jiang L W et al. Single-beam NMOR atomic magnetometer based on a fiberized EOM[J]. Optics Letters, 48, 3075-3078(2023).

    [74] Li R J, Quan W, Fan W F et al. A dual-axis, high-sensitivity atomic magnetometer[J]. Chinese Physics B, 26, 120702(2017).

    [75] Sheng J W, Wan S G, Sun Y F et al. Magnetoencephalography with a Cs-based high-sensitivity compact atomic magnetometer[J]. The Review of Scientific Instruments, 88, 094304(2017).

    [76] Huang S J, Zhang G Y, Hu Z H et al. Human magnetoencephalography measurement by highly sensitive SERF atomic magnetometer[J]. Chinese Journal of Lasers, 45, 1204006(2018).

    [77] Osborne J, Orton J, Alem O et al. Fully integrated standalone zero field optically pumped magnetometer for biomagnetism[J]. Proceedings of SPIE, 10548, 105481G(2018).

    [78] Limes M E, Foley E L, Kornack T W et al. Portable magnetometry for detection of biomagnetism in ambient environments[J]. Physical Review Applied, 14, 011002(2020).

    [79] Zhang G Y, Zeng H J, Tan G B et al. An integrated high-sensitivity VCSEL-based spin-exchange relaxation-free magnetometer with optical rotation detection[J]. IEEE Sensors Journal, 22, 7700-7708(2022).

    [80] Savukov I M, Zotev V S, Volegov P L et al. MRI with an atomic magnetometer suitable for practical imaging applications[J]. Journal of Magnetic Resonance, 199, 188-191(2009).

    [81] Michalak D J, Xu S J, Lowery T J et al. Relaxivity of gadolinium complexes detected by atomic magnetometry[J]. Magnetic Resonance in Medicine, 66, 603-606(2011).

    [82] Xu S J, Yashchuk V V, Donaldson M H et al. Magnetic resonance imaging with an optical atomic magnetometer[J]. Proceedings of the National Academy of Sciences of the United States of America, 103, 12668-12671(2006).

    [83] Xu S J, Crawford C W, Rochester S et al. Submillimeter-resolution magnetic resonance imaging at the Earth’s magnetic field with an atomic magnetometer[J]. Physical Review A, 78, 013404(2008).

    [84] Savukov I, Karaulanov T. Anatomical MRI with an atomic magnetometer[J]. Journal of Magnetic Resonance, 231, 39-45(2013).

    [85] Savukov I, Karaulanov T. Multi-flux-transformer MRI detection with an atomic magnetometer[J]. Journal of Magnetic Resonance, 249, 49-52(2014).

    [86] Savukov I, Karaulanov T. Magnetic-resonance imaging of the human brain with an atomic magnetometer[J]. Applied Physics Letters, 103, 43703(2013).

    [87] Kim Y J, Savukov I. Parallel high-frequency magnetic sensing with an array of flux transformers and multi-channel optically pumped magnetometer for hand MRI application[J]. Journal of Applied Physics, 128, 154503(2020).

    [88] Wu Z K, Chai Z, Mao Y K et al. High-resolution optical magnetic resonance imaging of electronic spin polarization in miniaturized atomic sensors[J]. Applied Physics Letters, 121, 204103(2022).

    [89] Hori S, Oida T, Moriya T et al. Magnetic shieldless ultra-low-field MRI with an optically pumped magnetometer[J]. Journal of Magnetic Resonance, 343, 107280(2022).

    [90] Bevilacqua G, Biancalana V, Dancheva Y et al. Restoring narrow linewidth to a gradient-broadened magnetic resonance by inhomogeneous dressing[J]. Physical Review Applied, 11, 024049(2019).

    [91] Bevilacqua G, Biancalana V, Dancheva Y et al. Sub-millimetric ultra-low-field MRI detected in situ by a dressed atomic magnetometer[J]. Applied Physics Letters, 115, 174102(2019).

    [92] Wickenbrock A, Tricot F, Renzoni F. Magnetic induction measurements using an all-optical 87Rb atomic magnetometer[J]. Applied Physics Letters, 103, 243503(2013).

    [93] Zhou X, Guo J, Sun X P et al. A magnetic resonance atomic gyroscope device with adjustable temperature gradient[P].

    [94] Zhou X, Tan Z, Sun X P et al. Atomic magnetometer based on atomic vapor quantum correlation light source[P].

    [95] Sasaki K, Nakamura Y, Gu H et al. Magnetic field imaging by hBN quantum sensor nanoarray[J]. Applied Physics Letters, 122, 244003(2023).

    Kexiang Mou, Zheng Tan, Li Wang, Xianping Sun, Chaohui Ye, Xin Zhou. Advancements in Nuclear Magnetic Resonance Research Based on Laser Pumped Atomic Sensors[J]. Chinese Journal of Lasers, 2024, 51(9): 0907001
    Download Citation