[1] WANG Yulong, WANG Zhoufu, WANG Xitang, et al. Bull Chin Ceram Soc, 2022, 41(12): 4444-4457.
[2] WANG Yulong, WANG Zhoufu, WANG Xitang, et al. Mater Rep, 2023, 37(1): 67-76.
[3] ZHANG Yang, LI Yawei, LIAO Ning, et al. J Chin Ceram Soc, 2023, 51(3): 579-588.
[4] CHEN Tao, WANG Xing, LIU Zhenglong, et al. J Chin Ceram Soc, 2022, 50(12): 3305-3313.
[5] LI Guodan, DING Donghai, XIAO Guoqing, et al. J Chin Ceram Soc, 2021, 49(9): 2036-2044.
[6] CHEN Xing, REN Yun, LUO Jiyuan, et al. J Chin Ceram Soc, 2021, 49(4): 799-806.
[7] ZHANG Hong, LI Nan, YAN Wen. Refractories, 2014, 48(2): 106-110.
[8] LI J. Interfacial studies on the O3 modified carbon fiber-reinforced polyamide 6 composites[J]. Appl Surf Sci, 2008, 255(5): 2822-2824.
[9] HAO Jianxiu, DU Feng, WANG Weihong. Acta Mater Compos Sin, 2018, 35(2): 298-303.
[10] CHUKOV D I, STEPASHKIN A A, MAKSIMKIN A V, et al. Investigation of structure, mechanical and tribological properties of short carbon fiber reinforced UHMWPE-matrix composites[J]. Compos Part B Eng, 2015, 76: 79-88.
[11] LI H Y, LIEBSCHER M, MICHEL A, et al. Oxygen plasma modification of carbon fiber rovings for enhanced interaction toward mineral-based impregnation materials and concrete matrices[J]. Constr Build Mater, 2021, 273: 121950.
[12] LEE E S, LEE C H, CHUN Y S, et al. Effect of hydrogen plasma-mediated surface modification of carbon fibers on the mechanical properties of carbon-fiber-reinforced polyetherimide composites[J]. Compos Part B Eng, 2017, 116: 451-458.
[13] ZANG Z J, WANG Y S, DENG Q Y, et al. Surface modification of carbon fiber via electron-beam irradiation grafting[J]. Surf Interface Anal, 2013, 45(5): 913-918.
[14] LI J Q, HUANG Y D, FU S Y, et al. Study on the surface performance of carbon fibres irradiated by γ-ray under different irradiation dose[J]. Appl Surf Sci, 2010, 256(7): 2000-2004.
[15] LIANG F, XUE Z L, ZHAO L, et al. Mechanical properties and thermal shock resistance of alumina/hexagonal boron nitride composite refractories[J]. Metall Mater Trans A, 2015, 46(9): 4335-4341.
[16] AKSEL C, WARREN P D. Work of fracture and fracture surface energy of magnesia-spinel composites[J]. Compos Sci Technol, 2003, 63(10): 1433-1440.
[17] NAKAYAMA J, ABE H, BRADT R C. Crack stability in the work-of-fracture test: Refractory applications[J]. J Am Ceram Soc, 1981, 64(11): 671-675.
[18] JIANG Pengcheng, WANG Zhoufu, LIU Hao, et al. J Chin Ceram Soc, 2022, 50(7): 1994-2004.
[19] JIANG P C, WANG Z F, LIU H, et al. Improving the strength and oxidation resistance of phenolic resin derived pyrolytic carbons via Cu-catalyzed in situ formation of SiC@SiO2[J]. Solid State Sci, 2021, 118: 106645.
[20] LIAO Ning, LI Yawei, SANG Shaobai, et al. J Chin Ceram Soc, 2014, 42(12): 1591-1599.
[21] FAN H B, LI Y W, SANG S B. Microstructures and mechanical properties of Al2O3-C refractories with silicon additive using different carbon sources[J]. Mat Sci Eng A, 2011, 528(7/8): 3177-3185.
[22] LIAO N, LI Y W, WANG Q H, et al. Synergic effects of nano carbon sources on thermal shock resistance of Al2O3-C refractories[J]. Ceram Int, 2017, 43(16): 14380-14388.
[23] WANG Yuguo, WU Guangshun. N Carbon Mater, 2007, 22(1): 88-91.
[24] WANG M C, ZHANG Z G, SUN Z J, et al. Effect of fiber type on mechanical properties of short carbon fiber reinforced B4C composites[J]. Ceram Int, 2009, 35(4): 1461-1466.
[25] MEI H, BAI Q L, SUN Y Y, et al. The effect of heat treatment on the strength and toughness of carbon fiber/silicon carbide composites with different pyrolytic carbon interphase thicknesses[J]. Carbon, 2013, 57: 288-297