• Journal of Atmospheric and Environmental Optics
  • Vol. 10, Issue 2, 117 (2015)
Liangfu CHEN*, Jinhua TAO, Zifeng WANG, Shenshen LI, Ying ZHANG, Meng FAN, Xiaoying LI, Chao YU, Mingmin ZOU, Lin SU, and Minghui TAO
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2015.02.004 Cite this Article
    CHEN Liangfu, TAO Jinhua, WANG Zifeng, LI Shenshen, ZHANG Ying, FAN Meng, LI Xiaoying, YU Chao, ZOU Mingmin, SU Lin, TAO Minghui. Review of Satellite Remote Sensing of Air Quality[J]. Journal of Atmospheric and Environmental Optics, 2015, 10(2): 117 Copy Citation Text show less
    References

    [1] World Health Organization. Review of evidence on health aspects of air pollution-REVIHAAP[R]. 2014.

    [2] Lyons W A, Husar R B. SMS/GOES visible images detect a synoptic-scale air pollution episode[J]. Mon. Weather Rev., 1976, 104: 1623.

    [3] Fraser R S, Kaufman Y J, Mahoney R L. Satellite measurements of aerosol mass and transport[J]. Atmos. Environ., 1984, 18: 2577-2584.

    [4] Fishman J, Vukovich F M, Cahoon D, et al. The characterization of an air pollution episode using satellite total ozone measurements[J]. J. Appl. Meteor., 1987, 26: 1638-1654.

    [5] Kaufman Y J, Tanré D, Remer L A, et al. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer[J]. J. Geophys. Res., 1997, 102 (D14): 17051-17067.

    [6] Higurashi A, Nakajima T. Development of a two channel aerosol retrieval algorithm on global scale using NOAA/AVHRR[J]. J. Atmos. Sci., 1999, 56(7): 924-941.

    [7] Diner D J, Martonchik J V, Kahn R, et al. Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land[J]. Remote Sen. Environ., 2005, 94: 155-171.

    [8] Sun Lin. Remote Sensing of Aerosols over Urban Areas[D]. Beijing: Doctorial Dissertation of Institute of Remote Sensing Applications, Chinese Academy of Sciences, 2006(in Chinese).

    [9] Deuzé J L, Bréon F M, Devaux C, et al. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements[J]. J. Geophys. Res., 2001, 106(5): 4913-4926.

    [10] Remer L, Kaufman Y, Tanre D, et al. The modis aerosol algorithm, products, and validation[J]. J. Atmos. Sci., 2005, 62(4): 947-973.

    [11] Levy R C, Remer L A, Mattoo S, et al. The second-generation operational algorithm: Retrieval of aerosol prosperities over land from inversion of MODIS spectral reflectance[J]. J. Geophys. Res., 2007, 112(D13): D13211.

    [12] Li S, Chen L F, Tao J H, et al. Retrieval of aerosol optical depth over bright targets in the urban areas of North China during winter[J]. Sci. China-Earth Sci., 2012, 55: 1545-1553.

    [13] Li S, Garay M J, Chen L, et al. Comparison of GEOS-Chem aerosol optical depth with AERONET and MISR data over the contiguous United States[J]. J. Geophys. Res., 2013, 118: 11228-11241.

    [14] Wang Z, Chen L, Li Q, et al. Retrieval of aerosol size distribution from multi-angle polarized measurements assisted by intensity measurements over East China[J]. Remote Sens. Environ., 2012, 124: 679-688.

    [15] Shang H, Chen L, Tao J, et al. Synergetic use of MODIS cloud parameters for distinguishing high aerosol loadings from clouds over the North China Plain[J]. IEEE J. Sel. Top. App. Earth Observ. Remote Sens., 2014: 99.

    [16] Li S, Chen L, Xiong X, et al. Retrieval of the Haze Optical Thickness in North China Plain Using MODIS Data[J]. IEEE Trans. Geosci. Remote Sens., 2013, 51: 2528-2540.

    [17] Wang Zhongting, Li Qing, Li Shenshen, et al. The monitoring of haze from HJ-1[J]. Spectroscopy and Spectral Analysis, 2012, 32(3): 775-780(in Chinese).

    [18] Tao M, Chen L, Su L, et al. Satellite observation of regional haze pollution over the North China Plain[J]. J. Geophys. Res., 2012, 117(D12): D12203.

    [19] Martin R V. Satellite remote sensing of surface air quality[J]. Atmos. Environ., 2008, 42: 7823-7843.

    [20] Hoff R M, Christopher S A. Remote sensing of particulate pollution from space: Have we reached the promised land[J]. J. Air Waste Manag. Assoc., 2009, 59: 645-675.

    [21] Liu Y, Sarnat J A, Kilaru V, et al. Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing[J]. Environ. Sci. Technol., 2005, 39: 3269-3278.

    [22] Liu Y, Park R J, Jacob D J, et al. Mapping annual mean ground-level PM2.5concentrations using Multi-angle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States[J]. J. Geophys. Res.-Atmos., 2004, 109(D22): D22206.

    [23] Tao J H, Zhang M G, Chen L F, et al. Method to estimate concentration of surface-level particulate matter from satellite-based aerosol optical thickness[J]. Sci. China: Earth Sci., 2013, 56: 1422-1433.

    [24] Hutchison K D, Faruqui S J, Smith S. Improving correlations between MODIS aerosol optical thickness and ground-based PM2.5 observations through 3D spatial analyses[J]. Atmos. Environ., 2008, 42: 530-543.

    [25] Wang Z, Chen L, Tao J, Zhang Y, Su L, Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical-and-RH correcting method[J]. Remote Sens. Environ., 2010, 114: 50-63.

    [26] Bovensmann H, Burrows J P, Buchwitz M, et al. SCIAMACHY: Mission objectives and measurement modes[J]. J. Atmos. Sci., 1999, 56: 127-150.

    [27] Levelt P F, Van den Oord G H J, Dobber M R, et al. The Ozone Monitoring Instrument[J]. IEEE Trans. Geosci. Remote Sens., 2006, 44: 1093-1101.

    [28] Veefkind J P, de Haan J R, Brinksma E J, et al. Total ozone from the Ozone Monitoring Instrument (OMI) using the DOAS technique[J]. IEEE Trans. Geosci. Remote Sens., 2006, 44: 1239-1244.

    [29] Han D, Chen L F, Su L, et al. A convolution algorithm to calculate differential cross sections of the Ring effect in the Earth’s atmosphere based on rotational Raman scattering[J]. Sci. China: Earth Sci., 2011, 54: 1407-1412.

    [30] Krotkov N A, Carn S A, Krueger A J, et al. Band residual difference algorithm for retrieval of SO2 from the aura Ozone Monitoring Instrument (OMI)[J]. IEEE Trans. Geosci. Remote Sens., 2006, 44: 1259-1266.

    [31] Yang K, Krotkov N A, Krueger A J, et al. Retrieval of large volcanic SO2 columns from the Aura Ozone Monitoring Instrument: Comparison and limitations[J]. J. Geophys. Res., 2007, 112: 24-43.

    [32] Yang K, Krotkov N A, Krueger A J, et al. Improving retrieval of volcanic sulfur dioxide from backscattered UV satellite observations[J]. Geophys. Res. Lett., 2009, 36: L03102.

    [33] Yan H, Chen L, Tao J, et al. Corrections for OMI SO2 BRD retrievals influenced by row anomalies[J]. Atmos. Meas. Tech., 2012, 5: 2635-2646.

    [34] Yang K, Dickerson R R, Carn S A, et al. First observations of SO2 from the satellite Suomi NPP OMPS: Widespread air pollution events over China[J]. Geophys. Res. Lett., 2013, 40: 4957-4962.

    [35] Yang K, Carn S A, Ge C, et al. Advancing measurements of tropospheric NO2 from space: New algorithm and first global results from OMPS[J]. Geophys. Res. Lett., 2014; 41: 4777-4786.

    [36] Bennartz R, Preusker R. Representation of the photon pathlength distribution in a cloudy atmosphere using finite elements[J]. J. Quant. Spectr. Rad. Trans., 2006, 98: 202-219.

    [37] Zou M, Chen L, Tao J, et al. Accuracy analysis of PPDF-based method to parameterize aerosol scattering effect[J]. Sci. China: Earth Sci., 2014, 57: 1807-1815.

    [38] Chahine M T, Barnet C, Olsen E T, et al. On the determination of atmospheric minor gases by the method of vanishing partial derivatives with application to CO2[J]. Geophys. Res. Lett., 2005, 32: L22803.

    [39] Goldberg M D, Qu Y, McMillin L M, et al. AIRS near-real-time products and algorithms in support of operational numerical weather prediction[J]. IEEE Trans. Geosci. Remote Sens., 2003, 41: 379-389.

    [40] Crevoisier C, Chédin A, Matsueda H, et al. First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations[J]. Atmos. Chem. Phys., 2009, 9(14): 4797-4810.

    [41] Zhang Y, Xiong X, Tao J, et al. Methane retrieval from Atmospheric Infrared Sounder using EOF-based regression algorithm and its validation[J]. Chinese Sci. Bull., 2014, 59(14): 1508-1518.

    [42] Xiong X, Barnet C, Maddy E, et al. Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS)[J]. J. Geophys. Res., 2008, 113(G00A01): 1-14.

    [43] Buchwitz M. SCIAMACHY WFM-DOAS methane, carbon monoxide, and carbon dioxide dolumns: algorithm description and product specification[R]. IUP-SCIA-WFMD-ADPS-0003, Vers 2, Bremen, Germany, 2007.

    CLP Journals

    [1] ZHAO Ran, ZHANG Chengxin, WU Yue, SUN Zhongping, LIU Cheng. Analysis of Spatio-Temporal Variations of Tropospheric Nitrogen Dioxide in the North China Plain Based on EMI[J]. Journal of Atmospheric and Environmental Optics, 2021, 16(3): 186

    CHEN Liangfu, TAO Jinhua, WANG Zifeng, LI Shenshen, ZHANG Ying, FAN Meng, LI Xiaoying, YU Chao, ZOU Mingmin, SU Lin, TAO Minghui. Review of Satellite Remote Sensing of Air Quality[J]. Journal of Atmospheric and Environmental Optics, 2015, 10(2): 117
    Download Citation