• Acta Physica Sinica
  • Vol. 69, Issue 17, 178801-1 (2020)
Guang-Wei Shao1、2, Shan-Shan Guo1, Rui Yu2、*, Nan-Liang Chen1、*, Mei-Dan Ye2、*, and Xiang-Yang Liu3、*
Author Affiliations
  • 1Shanghai Collaborative Innovation Center for High Performance fiber composites, Engineering Research Center of Technical Textile, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
  • 2Research Institute for Biomimetics and Soft Matter, College of Physical Science andTechnology, Xiamen University, Xiamen 361005, China
  • 3Faculty of Science, National University of Singapore, Singapore 119077, Singapore
  • show less
    DOI: 10.7498/aps.69.20200881 Cite this Article
    Guang-Wei Shao, Shan-Shan Guo, Rui Yu, Nan-Liang Chen, Mei-Dan Ye, Xiang-Yang Liu. Stretchable supercapacitors: Electrodes, electrolytes, and devices[J]. Acta Physica Sinica, 2020, 69(17): 178801-1 Copy Citation Text show less
    Schematic illustrations of energy storage mechanisms of (a) electric double-layer capacitor, (b) pseudocapacitor, (c) hybrid capacitor. (d) Structure diagram of supercapacitor.
    Fig. 1. Schematic illustrations of energy storage mechanisms of (a) electric double-layer capacitor, (b) pseudocapacitor, (c) hybrid capacitor. (d) Structure diagram of supercapacitor.
    Design ideas of stretchable supercapacitor: Elastic polymer, stretchable structure, and elastic polymer + stretchable structure.
    Fig. 2. Design ideas of stretchable supercapacitor: Elastic polymer, stretchable structure, and elastic polymer + stretchable structure.
    Stretchable electrodes/supercapacitors based on elastic polymer: (a), (b) PDMS[36,50]; (c) Ecoflex[52]; (d) PU[21]; (e) elastic fiber[55].
    Fig. 3. Stretchable electrodes/supercapacitors based on elastic polymer: (a), (b) PDMS[36,50]; (c) Ecoflex[52]; (d) PU[21]; (e) elastic fiber[55].
    Stretchable supercapacitors based on stretchable structure: (a) Helical structure[66]; (b) wave structure[68]; (c) fabric structure[71]; (d) serpentine structure[75]; (e)−(g) net structure[45,76,78].
    Fig. 4. Stretchable supercapacitors based on stretchable structure: (a) Helical structure[66]; (b) wave structure[68]; (c) fabric structure[71]; (d) serpentine structure[75]; (e)−(g) net structure[45,76,78].
    Schematic illustrations of stretchable supercapacitors: (a) Fabric structure stretchable supercapacitors; (b) stretchable fabric structure; (c) non-stretchable fabric structure; (d) image of stretchable fabric structure; (e) capacity retention after different numbers of stretch/release cycles under different strains (10%, 20%, and 30%) at a current density of 8 A/g (the inset presents the images of the hybrid supercapacitor device during stretching cycles); (f) schematic of elbow-fitted supercapacitor; images of two supercapacitors connected in series for the illumination of an elbow-fitted LED for (g) stretching and (h) bending. (i) Two devices connected in series for the illumination of a set of 40 LEDs with a parallel "DHU" pattern[81].
    Fig. 5. Schematic illustrations of stretchable supercapacitors: (a) Fabric structure stretchable supercapacitors; (b) stretchable fabric structure; (c) non-stretchable fabric structure; (d) image of stretchable fabric structure; (e) capacity retention after different numbers of stretch/release cycles under different strains (10%, 20%, and 30%) at a current density of 8 A/g (the inset presents the images of the hybrid supercapacitor device during stretching cycles); (f) schematic of elbow-fitted supercapacitor; images of two supercapacitors connected in series for the illumination of an elbow-fitted LED for (g) stretching and (h) bending. (i) Two devices connected in series for the illumination of a set of 40 LEDs with a parallel "DHU" pattern[81].
    Comparison of the stretchable supercapacitor with reported supercapacitors with respect to the tensile recovery, stretching cyclic stability, and electrochemical properties, where C0 and C correspond to the specific capacities before and after stretching cycles, respectively.
    Fig. 6. Comparison of the stretchable supercapacitor with reported supercapacitors with respect to the tensile recovery, stretching cyclic stability, and electrochemical properties, where C0 and C correspond to the specific capacities before and after stretching cycles, respectively.
    Stretchable supercapacitors based on elastic polymer and stretchable structure: (a), (b) Elastic polymer and wave structure[57,92]; (c) elastic polymer and helical structure[94]; (d) elastic polymer and fabric structure[97]; (e) elastic polymer and net structure[59].
    Fig. 7. Stretchable supercapacitors based on elastic polymer and stretchable structure: (a), (b) Elastic polymer and wave structure[57,92]; (c) elastic polymer and helical structure[94]; (d) elastic polymer and fabric structure[97]; (e) elastic polymer and net structure[59].
    Multifunction stretchable supercapacitors: (a) Self-powered[47]; (b) sensing[73]; (c), (d) transparent[87,120].
    Fig. 8. Multifunction stretchable supercapacitors: (a) Self-powered[47]; (b) sensing[73]; (c), (d) transparent[87,120].
    Multifunction stretchable supercapacitors: (a)−(e) ultrathin[112]; (f) self-healing[90].
    Fig. 9. Multifunction stretchable supercapacitors: (a)−(e) ultrathin[112]; (f) self-healing[90].
    (a) Illustration of the preparation of Agar/HPAAm double-net hydrogel; (b) the recovery performance of Agar/HPAAm hydrogel and Agar/PAAm hydrogel under different stretching conditions[126]; (c) schematic configuration of the intrinsically stretcha-ble supercapacitor using highly stretchable gel electrolyte[105].
    Fig. 10. (a) Illustration of the preparation of Agar/HPAAm double-net hydrogel; (b) the recovery performance of Agar/HPAAm hydrogel and Agar/PAAm hydrogel under different stretching conditions[126]; (c) schematic configuration of the intrinsically stretcha-ble supercapacitor using highly stretchable gel electrolyte[105].
    导电处理活性材料沉积方法电容表现极限拉伸率/%电容稳定性文献
    PDMS基底材料的可拉伸超级电容器
    石墨烯石墨烯激光诱发650 μF/cm2@35 μA/cm2501000次拉伸循环后 保持84%电容 [35]
    碳纳米管V2O5/PEDOT 旋涂135 mF/cm2@0.5 mA/cm250100次拉伸循环后 保持85%电容 [36]
    单壁碳纳米管单壁碳纳米管化学汽相淀积17.5 F/g1201000次拉伸循环后 电容没有变化 [50]
    单壁碳纳米管单壁碳纳米管/ 氮化硼纳米管 干压7.7 F/g @19 μF/cm25050%应变下1000次 拉伸循环后 电容增加25% [51]
    PU基底材料的可拉伸超级电容器
    聚吡咯聚吡咯化学聚合108.5 F/g@1 A/g100100%应变下拉伸1000次后保持90%电容[37]
    氮-碳纳米管氮-碳纳米管化学气相沉积37.6 mF/cm2@0.05 mA/cm25001000次拉伸后保持96%电容[21]
    Ecoflex基底材料的可拉伸超级电容器
    碳纳米管单壁碳纳米管涂覆15.2 F/cm3@0.021 A/cm360在0, 20%, 40%应变下, 1000次充放电循环后电容保持97.4%, 95.5%, 94.5%[52]
    PEDOT:PSS基底材料的可拉伸超级电容器
    银掺杂PEDOT:PSS/碳纳米管浸渍烘干64 mF/cm2 (85.3 F/g) 480400%应变下100次拉伸循环后保持90%电容[53]
    多壁碳纳米管多米碳纳米管@聚苯胺电聚合2.2 F/cm3 @1 mA/cm25050%应变下300次拉伸循环后CV曲线没有明显变化[54]
    Table 1.

    Summary of recent studies on stretchable supercapacitor based on elastic polymer.

    利用弹性聚合物为基底制备可拉伸超级电容器的研究概括

    导电处理活性材料沉积方法电容表现极限拉伸率/%电容稳定性文献
    螺旋结构设计的可拉伸超级电容器
    不锈钢弹簧碳纳米管/聚苯胺原位合成277.8 F/g@1 A/g, 402.8 mF/cm @1 mA/cm100在100%应变下电容没有 明显降低 [41]
    碳纳米管纱线聚吡咯/碳纳米管电沉积63.6 F/g@1 A/g150[42]
    不锈钢线MnO2/还原氧化石墨烯 电沉积2.86 mWh/cm3400400%应变下拉伸循环3000次后保持95%电容[64]
    碳纳米管纱线碳纳米管纱线/MnO2/聚吡咯 电沉积60.43 mF/cm2, 7.72 F/g, 9.46 F/cm3, 9.86 mF/cm@10 mV/s 2020%应变下拉伸循环200次后保持88%电容[65]
    碳纳米管纤维碳纳米管纺丝0.51 mF/cm, 27.07 mF/cm2@150 mA/cm3300拉伸循环300次后保持94%电容[66]
    波浪结构设计的可拉伸超级电容器
    碳纳米管碳纳米管@MnO2/碳纳米管@聚吡咯 电沉积2.2 F/cm3@2 mA/cm2100拉伸循环500次后保持96%电容[67]
    泡沫镍聚苯胺/石墨烯电聚合261 F/g3030%应变下拉伸循环100次后保持95%电容[68]
    织物结构设计的可拉伸超级电容器
    银涂层聚吡咯@MnO2丝网印刷0.0337 mWh/cm2, 95.3 mF/cm2@5 mV/s 4040%应变下保持 86.2%电容 [69]
    不锈钢网聚吡咯电化学沉积170 F/g@0.5 A/g2020%应变下拉伸循环10000次后保持87%电容[46]
    碳纳米管 织物聚吡咯@MnO2电镀461 F/g@0.2 A/g2121%应变下保持98.5%电容[70]
    碳纤维PEDOT:PSS/碳浸渍涂覆100100%应变下拉伸循环6000次后保持70%电容[71]
    导电过滤网聚吡咯@MnO2电沉积20[29]
    银镀层MnO2–碳纳米管/PEDOT:PSS 丝网印刷17.5 mWh/cm2@0.4 mW/cm22020%应变下拉伸循环100次后保持95.26%电容[47]
    单壁碳纳米管单壁碳纳米管浸渍烘干140 F/g, 0.48 F/cm2@20 μA/cm2120拉伸后比电容没有变化[72]
    多壁碳纳米管多壁碳纳米管/MoO3喷涂48.3 F/g@0.14 A/g, 33.8 mF/cm2 @0.1 mA/cm 50应变从10%增加到50%, 拉伸循环5000次后 保持80%电容 [73]
    蛇形结构设计的可拉伸超级电容器
    钛/铂聚吡咯-多壁碳纳米管喷涂5.17 mF/cm2@100 μA/cm23030%应变下双轴拉伸循环1000次后充放电行为没有发生明显变化[74]
    单壁碳纳米管单壁碳纳米管喷涂100 μF@0.5 V/s3030%应变下拉伸循环10次后电容没有明显恶化[75]
    网状结构设计的可拉伸超级电容器
    单壁碳纳米管膜单壁碳纳米管喷涂1.6 F/cm3, 448 nF/cm2 @1 V/s 150150%应变下电容保持不变[44]
    碳纳米管膜聚吡咯/黑磷/碳纳米管电沉积7.35 F/cm2@7.8 mA/cm220002000%应变下拉伸循环10000次后保持95%电容[76]
    碳纳米管碳纳米管/聚吡咯电沉积69 F/g, 3.5 mF/cm, 74.1 mF/cm2, 9.9 F/cm3 @2 mV/s 105%应变下拉伸循环5000次后有101%动态电容[77]
    碳纳米管膜碳纳米管化学气 相沉积 61.4 mF/cm2, 35.7 F/g 16.0 F/cm3@1 mA/cm21616%应变下拉伸循环3000次后保持93.3%电容[45]
    碳纳米管MnO2/碳纳米管 水热合成法227.2 mF/cm2500400%应变下拉伸循环10000次后保持98%电容[78]
    Table 2.

    Summary of recent studies on stretchable supercapacitors based on stretchable structure.

    通过可拉伸结构设计制备可拉伸超级电容器的研究概括

    基底材料结构类型导电处理活性材料沉积方法电容表现拉伸率/%电容稳定性文献
    PDMS波浪结构多壁碳纳米管多壁碳纳米管/聚苯胺3D打印44.13 mF/cm2@ 0.2 mA/cm240在5%-40%不同应变情况下, 电化学性能几乎没有变化[57]
    PDMS波浪结构3D-石墨烯3D-石墨烯/聚苯胺原位聚合77.8 Wh/kg @995 W/kg 100100%应变下拉伸循环100次后保持91.2%电容[60]
    PDMS波浪结构碳纳米管聚苯胺/碳纳米管涂覆308.4 F/g@8 A/g100100%应变下拉伸循环200次后电容保持不变[82]
    PDMS波浪结构单壁碳纳米管/PEDOT 混合纤维单壁碳纳米管/PEDOT电沉积53 F/g, 1.6 mF/cm2@1 A/g 100X和Y两个方向, 100%应变下拉伸循环5000次后保持96.9% 和 90.1%电容[83]
    PDMS波浪结构碳纳米管膜MnO2/碳纳米管, Fe2O3/碳纳米管 水热反应45.8 Wh/kg100在多种应变下电化学循环10000次后保持98.9%电容[62]
    PDMS波浪结构不锈钢线Ni-Co-S/还原氧化石墨烯电沉积127.2 mF/cm2@0.1 mA/cm 100100%应变下拉伸循环1000次后保持91%电容[84]
    PDMS波浪结构单壁碳纳米管/聚苯胺混合膜单壁碳纳米管/聚苯胺化学气 相沉积 106 F/g@1 A/g120拉伸循环200次后保持85%电容[85]
    PDMS网状结构还原氧化 石墨烯 还原氧化石墨烯浸渍烘干188 mAh/g @0.05 A/g 5050%应变下拉伸循环100次后保持89%电容[86]
    PDMS网状结构金-聚甲基丙烯酸甲酯PMMA 纳米纤维网MnO2电沉积3.68 mF/cm2@0.007 mA/cm26060%应变下保持92%电容[59]
    PDMS网状结构银/金核壳 纳米线 聚吡咯电化学沉积580 μF/cm2@5.8 μA/cm250应变从10%增加到50%, CV曲线几乎没有变化[87]
    PDMS网状结构泡沫石墨烯聚吡咯/ 石墨烯 化学气相沉积和化学界面聚合258 mF/cm2@1 mA/cm25030%应变下充放电循环100次后保持88%电容[80]
    PU螺旋结构镀银碳纳米管浸渍涂覆4.17 mWh/cm3150重复拉伸变形后电容没有明显下降[58]
    PU螺旋结构碳纳米管聚吡咯/碳纳米管电沉积69 mF/cm2130应变从0%增加到40%, 拉伸循环1000次后保持85%电容[88]
    PU螺旋结构纳米碳N-石墨烯/3D镍钴铝原位聚合1.1 mWh/cm2@2.59 mW/cm210050%应变下拉伸循环10000次后保持91%电容[89]
    PU螺旋结构还原氧化石墨烯纤维聚吡咯/还原氧化石墨烯/多壁碳 纳米管 0.94 mWh/cm3100100%应变下保持82.4%电容[90]
    Ecoflex 橡胶芯 螺旋结构碳纳米管MnO2/PEDOT@碳 纳米管 电沉积2.38 mF/cm, 11.88 mF/cm2200在拉伸循环和扭曲循环后电容分别保持92.8%和98.2%[91]
    Ecoflex波浪结构泡沫镍聚苯胺/ 石墨烯 电沉积261 F/g@0.38 A/g3030%应变下拉伸循环100次后保持95%电容[68]
    Ecoflex 橡胶波浪结构碳纳米管PEDOT/碳纳米管气相聚合82 F/g, 11 mF/cm2@10 mV/s 600600%双向拉伸应变下保持94%电容[92]
    PEDOT:PSS螺旋结构PEDOT-S:PSSPEDOT-S:PSS湿法纺丝93.1 mF/cm2@50 μA/cm2400400%应变下保持80%电容[93]
    弹性橡胶 纤维 螺旋结构金@碳纳米管聚苯胺/碳纳米管电沉积6 F/cm3@70 A/cm3400应变从0%增加到400%保持96%电容[94]
    弹性纤维螺旋结构碳纳米管纤维MnO2@PEDOT:PSS@碳纳米管 涂覆和 电沉积 278.6 mF/cm2100100%应变下拉伸循环3000次后保持92%电容[95]
    弹性纤维螺旋结构碳纳米管碳纳米管包裹0.515 Wh/kg@ 0.05 A/g 10075%应变下拉伸循环100次后保持95%电容[55]
    橡胶纤维螺旋结构碳纳米管片MnO2/碳纳米管 包裹4.8 mF/cm, 22.8 mF/cm240—800600%应变下保持92.6%电容[96]
    聚合物基底波浪结构石墨烯机织布聚苯胺/ 石墨烯 原位电沉积17 μF/cm2@0.06 V/s 30拉伸循环100次后CV 曲线略有下降(应变速率 60%/s)[97]
    橡皮筋波浪结构碳纳米管膜碳纳米管/ 聚苯胺 电沉积394 F/g@2 mV/s100100%应变下拉伸循环100次后保持98%电容[79]
    Table 3.

    Summary of recent studies on stretchable supercapacitors based on elastic polymer + stretchable structure.

    弹性聚合物与可拉伸结构结合的复合电极制备可拉伸超级电容器研究概括

    Guang-Wei Shao, Shan-Shan Guo, Rui Yu, Nan-Liang Chen, Mei-Dan Ye, Xiang-Yang Liu. Stretchable supercapacitors: Electrodes, electrolytes, and devices[J]. Acta Physica Sinica, 2020, 69(17): 178801-1
    Download Citation