• Frontiers of Optoelectronics
  • Vol. 2, Issue 3, 345 (2009)
Guangcun SHAN1、2、* and Wei HUANG1、3
Author Affiliations
  • 1Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
  • 2State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 3Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
  • show less
    DOI: 10.1007/s12200-009-0017-9 Cite this Article
    Guangcun SHAN, Wei HUANG. Photon properties of light in semiconductor microcavities[J]. Frontiers of Optoelectronics, 2009, 2(3): 345 Copy Citation Text show less
    References

    [1] Astratov V N, Yang S, Lam S, Jones D, Sanvitto D, Whittaker D M, Fox A M, Skolnick M S. Whispering gallery resonances in semiconductor micropillars. Applied Physics Letters, 2007, 91(7): 071115-1-071115-3

    [2] Eleuch H. Photon statistics of light in semiconductor. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41(5): 055502-1-055502-5

    [3] Painter O. Two-dimensional photonic band-gap defect mode laser. Science, 1999, 284(5421): 1819-1822

    [4] Baas A, Karr J, Eleuch H, Giacobino E. Optical bistability in semiconductor microcavities. Physical Review A, 2004, 69(2): 023809-1-023809-8

    [5] Reithmaier J P, Sek G, Loeffler, A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L, Forchel A. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature, 2004, 432(7065): 197-200

    [6] Peter E, Senellart P, Martrou D, Lematre A, Hours J, Gerard J M, Bloch J. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Physical Review Letters, 2005, 95(6): 067401-1-067401-4

    [7] Eastham P R, Littlewood P B. Finite-size fluctuations and photon statistics near the polariton condensation transition in a singlemode microcavity. Physical Review B, 2006, 085306-1-085306-11

    [8] Shan G C, Bao S Y. Theoretical study of a quantum dot microcavity laser. Proceedings of SPIE, 2007, 6279: 627925-1-627925-7

    [9] Grundmann M. Nanoscroll formation from strained layer heterostructures. Applied Physics Letters, 2003, 83(12): 2444-2446

    [10] Nomura M, Iwamoto S. Localized excitation of InGaAs quantum dots by utilizing a photonic crystal nanocavity. Applied Physics Letters, 2006, 88(14): 141108-1-141108-3

    [11] Rempe G, Walter H, Klein N. Observation of quantum collapse and revival in a one-atom maser. Applied Physics Letters, 1987, 58(4): 353-356

    [12] Dasbach G, Diederichs C, Tignon J, Ciuti C, Roussignol P, Delalande C, Bayer M, Forchel A. Polarization selective polariton oscillation in quasi-one-dimensional microcavities. Physica Status Solidi C, 2005, 2(9): 779-782

    [13] Raizen H G, Thompson R J, Brecha R J, Kimble H J, Carmichael H J. Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity. Physical Review Letters, 1989, 63(3): 240-243

    [14] Thompson R J, Rempe G, Kimble H J. Observation of normal-mode splitting for an atom in an optical cavity. Phsical Review Letters, 1992, 68(8): 1132-1135

    [15] Pelton M, Yamamoto Y. Ultralow threshold laser using a single quantum dot and a microsphere cavity. Physical Review A, 1999, 59(3): 2418-2422

    [16] Peter E, Sagnes I, Guirleo G, Varoutsis S, Bloch J, Lematre A, Senellart P. High-Q whispering-gallery modes in GaAs/AlOx microdisks. Applied Physics Letters, 2005, 86(2): 021103-1-021103-3

    [17] Armani D K, Kippenberg J, Spillane S M, Vahala K J. Ultra-high-Q toroid microcavity on a chip. Nature, 2003, 421(6929): 925-928

    [18] Messin G, Karr J P, Eleuch H, Courty J M, Giacobino E. Squeezed states and the quantum noise of light in semiconductor microcavities. Journal of Physics: Condensed Matter, 1999, 11(31): 6069-6078

    [19] Schwendimann P, Ciuti C, Quattropani A. Statistics of polaritons in the nonlinear regime. Physical Review B, 2003, 68(16): 165324-1-165324-10

    [20] Karr J P, Baas A, Houdre R, Giacobino E. Squeezing in semiconductor microcavities in the strong-coupling regime. Physical Review A, 2004, 69(3): 031802-1-031802-4

    [21] Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 2004, 432(7065): 200-202

    [22] Perea J I, Porras D, Tejedor C. Dynamics of the excitations of a quantum dot in a microcavity. Physical Review B, 2004, 70(11): 115304-1-115304-13

    [23] Ciuti C, Schwendimann P, Deveaud B, Quattropani A. Theory of the angle-resonant polariton amplifier. Physical Review B, 2000, 62(8): 4825-4828

    [24] Wiersig J, Hentschel M. Unidirectional light emission from high-Q modes in optical microcavities. Physical Review A, 2006, 73(3): 031802R-1-031802R-4

    [25] McKeever J, Boca A, Boozer A D. Experimental realization of a one-atom laser in the regime of strong coupling. Nature, 2003, 425(6955): 268-271

    [26] Eastham P R, Littelewood P B. Finite-size fluctuations and photon statistics near the polariton condensation transition in a single-mode microcavity. Physical Review B, 2006, 73(11): 085306-1-085306-11

    [27] Shan G C, Huang W. Theoretical study of single-pair fluorescence resonant energy transfer spectroscopy in microcavity. Acta Optica Sinica, 2009, 29(4): 1049-1053 (in Chinese)

    [28] Raithel G,Wagner C,Walther H, Narducci LM, ScullyMO. Cavity Quantum Electrodynamics. Boston: Academic Press, 1994, 50-62

    [29] Carmichael H, Orozco L A. Quantum optics: single atom lases orderly light. Nature, 2003, 425(6955): 246-247

    [30] Mu Y, Savage C M. One-atom lasers. Physical Review A, 1992, 46(9): 5944-5954

    [31] Weisbuch C, Nishioka M, Ishikawa A, Arakawa Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Applied Physics Letters, 1992, 69(23): 3314-3317

    Guangcun SHAN, Wei HUANG. Photon properties of light in semiconductor microcavities[J]. Frontiers of Optoelectronics, 2009, 2(3): 345
    Download Citation