• Chinese Journal of Lasers
  • Vol. 49, Issue 19, 1906003 (2022)
Yihan Li1、2、*, Shanzhuo Chen1, and Hao Guo1
Author Affiliations
  • 1School of Electrical and Information Engineering, Beihang University, Beijing 100191, China
  • 2Shenzhen Institute of Beihang University, Shenzhen 518063, Guangdong, China
  • show less
    DOI: 10.3788/CJL202249.1906003 Cite this Article Set citation alerts
    Yihan Li, Shanzhuo Chen, Hao Guo. Generation and Application of Multi-Wavelength Optical Carriers Based on Stimulated Brillouin Scattering[J]. Chinese Journal of Lasers, 2022, 49(19): 1906003 Copy Citation Text show less
    References

    [1] Diddams S A. The evolving optical frequency comb[J]. Journal of the Optical Society of America B, 27, B51-B62(2010).

    [2] Diddams S A, Jones D J, Ye J et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb[J]. Physical Review Letters, 84, 5102-5105(2000).

    [3] Fortier T M, Rolland A, Quinlan F et al. Optically referenced broadband electronic synthesizer with 15 digits of resolution[J]. Laser & Photonics Reviews, 10, 780-790(2016).

    [4] Murata H, Morimoto A, Kobayashi T et al. Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 6, 1325-1331(2000).

    [5] Nagatsuma T, Oogimoto K, Yasuda Y et al. 300-GHz-band wireless transmission at 50 Gbit/s over 100 meters[C](2016).

    [6] Jia S, Yu X B, Hu H et al. THz wireless transmission systems based on photonic generation of highly pure beat-notes[J]. IEEE Photonics Journal, 8, 7905808(2016).

    [7] Yao X S, Maleki L. Optoelectronic microwave oscillator[J]. Journal of the Optical Society of America B, 13, 1725-1735(1996).

    [8] Peng H F, Guo R, Xu Y C et al. Ultra-low phase noise and frequency agile X-band frequency synthesizer based on a phase locked optoelectronic oscillator[C](2019).

    [9] Shi M Y, Yi L L, Wei W et al. Generation and phase noise analysis of a wide optoelectronic oscillator with ultra-high resolution based on stimulated Brillouin scattering[J]. Optics Express, 26, 16113-16124(2018).

    [10] Hao T F, Cen Q Z, Dai Y T et al. Breaking the limitation of mode building time in an optoelectronic oscillator[J]. Nature Communications, 9, 1839(2018).

    [11] Lu Z J, Wang S W, Li W et al. 26.8 m 350 GHz wireless transmission of beyond 100 Gbit/s supported by THz photonics[C](2019).

    [12] Suelzer J S, Simpson T B, Devgan P et al. Tunable, low-phase-noise microwave signals from an optically injected semiconductor laser with opto-electronic feedback[J]. Optics Letters, 42, 3181-3184(2017).

    [13] Li Y H, Rolland A, Iwamoto K et al. Low-noise millimeter-wave synthesis from a dual-wavelength fiber Brillouin cavity[J]. Optics Letters, 44, 359-362(2019).

    [14] Boyd R W[M]. Nonlinear optics(2020).

    [15] Loh W, Green A A S, Baynes F N et al. Dual-microcavity narrow-linewidth Brillouin laser[J]. Optica, 2, 225-232(2015).

    [16] Nagatsuma T, Ducournau G, Renaud C C. Advances in terahertz communications accelerated by photonics[J]. Nature Photonics, 10, 371-379(2016).

    [17] Yi L, Iwamoto K, Yamamoto T et al. 300-GHz-band wireless communication using a low phase noise photonic source[C], 816-819(2019).

    [18] Lundberg L, Mazur M, Mirani A et al. Phase-coherent lightwave communications with frequency combs[J]. Nature Communications, 11, 201(2020).

    [19] Qu S W, Yang Y F, Xiang Q et al. Low-complexity blind phase search algorithm for master-slave carrier under frequency offset conditions[J]. Acta Optica Sinica, 41, 1706003(2021).

    Yihan Li, Shanzhuo Chen, Hao Guo. Generation and Application of Multi-Wavelength Optical Carriers Based on Stimulated Brillouin Scattering[J]. Chinese Journal of Lasers, 2022, 49(19): 1906003
    Download Citation