• Semiconductor Optoelectronics
  • Vol. 43, Issue 6, 1130 (2022)
GUO Jinyuan1 and YUAN Jianhui1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.16818/j.issn1001-5868.2022062702 Cite this Article
    GUO Jinyuan, YUAN Jianhui. Design of High Speed and High Gain CMOS Readout Chip for Laser Pulse Ranging[J]. Semiconductor Optoelectronics, 2022, 43(6): 1130 Copy Citation Text show less
    References

    [1] Riemensberger J, Lukashchuk A, Karpov M, et al. Massively parallel coherent laser ranging using a soliton microcomb[J]. Nature, 2020, 581(7807): 164-170.

    [2] Suh M G, Vahala K J. Soliton microcomb range measurement[J]. Science, 2018, 359(6378): 884-887.

    [3] Trocha P, Karpov M, Ganin D, et al. Ultrafastoptical ranging using microresonator soliton frequency combs[J]. Science, 2018, 359(6378): 887-891.

    [4] Yang Q F, Yi X, Yang K Y, et al. Counter-propagating solitons in microresonators[J]. Nature Photon., 2017, 11(9): 560-564.

    [5] Steindorfer M A, Kirchner G, Koidl F, et al. Daylight space debris laser ranging[J]. Nat. Commun., 2020, 11(1): 1-6.

    [6] Prochazka I, Kodet J, Blazej J, et al. Photon counting detector for space debris laser tracking and lunar laser ranging[J]. Adv. Space Res., 2014, 54(4): 755-758.

    [7] Kim S, Lim H C, Bennett J, et al. Analysis of space debris orbit prediction using angle and laser ranging data from two tracking sites under limited observation environment[J]. Sensors, 2020, 20(7): 1950.

    [8] Zhu F, Lu S, Sun J, et al. Inter-satellite laser-ranging based on intradyne coherent detection[J]. Appl. Opt., 2021, 60(28): 8930-8938.

    [9] Wilkinson M, Schreiber U, Prochzka I, et al. The next generation of satellite laser ranging systems[J]. J. Geo., 2019, 93(11): 2227-2247.

    [10] Kucharski D, Kirchner G, Bennett J C, et al. Photon pressure force on space debris TOPEX/poseidon measured by satellite laser ranging[J]. Earth Space Sci., 2017, 4(10): 661-668.

    [11] Xue L, Li Z, Zhang L, et al. Satellite laser ranging using superconducting nanowire single-photon detectors at 1064nm wavelength[J]. Opt. Lett., 2016, 41(16): 3848-3851.

    [12] Behroozpour B, Sandborn P A M, Wu M C, et al. Lidar system architectures and circuits[J]. IEEE Commun. Mag., 2017, 55(10): 135-142.

    [13] Strugarek D, Sos'nica K, Zajdel R, et al. Detector-specific issues in satellite laser ranging to swarm-A/B/C satellites[J]. Measurement, 2021, 182: 109786.

    [14] Yang W, Zhao Y, Fan C, et al. Real-time range gate control of a satellite laser ranging system based the on heterogeneous processor architecture[J]. Appl. Opt., 2021, 60(2): 296-305.

    [15] Xu X, Zhang H, Luo M, et al. Research on target echo characteristics and ranging accuracy for laser radar[J]. Infrared Phys. & Technol., 2019, 96: 330-339.

    [16] Peng J, Xu W, Liang B, et al. Pose measurement and motion estimation of space non-cooperative targets based on laser radar and stereo-vision fusion[J]. IEEE Sensor J., 2018, 19(8): 3008-3019.

    [17] Gao M, Tang J, Yang Y, et al. An obstacle detection and avoidance system for mobile robot with a laser radar[C]// 2019 IEEE 16th Inter. Conf. on Networking, Sensing and Control (ICNSC), 2019: 63-68.

    [20] Zohoori S, Shafiei T, Dolatshahi M. A 274μW, inductor-less, active RGC-based transimpedance amplifier operating at 5Gb/s[C]// 2019 27th Iranian Conf. on Electrical Engineering (ICEE), 2019: 1-4.

    [22] Belini V L, Romero M A. Design of active inductors using CMOS technology[C]// Proc. 15th Symp. on Integrated Circuits and Systems Design, 2002: 296-301.

    [24] Hermans C, Steyaert M. A high-speed 850nm optical receiver front-end in 0.18μm CMOS[J]. J. Solid-State Circuits, 2006, 41(7): 1606-1614.

    [26] Chen Y, Huang G. A CMOS transimpedance amplifier for pulsed laser range finder[J]. Proc. SPIE, 2010, 7658: 765860.