• Chinese Journal of Chemical Physics
  • Vol. 33, Issue 5, 540 (2020)
Jian Hong, De-xia Zhou, Hong-xing Hao, Min Zhao, and Hong-tao Bian*
DOI: 10.1063/1674-0068/cjcp2006096 Cite this Article
Jian Hong, De-xia Zhou, Hong-xing Hao, Min Zhao, Hong-tao Bian. Ultrafast Infrared Spectroscopic Study of Microscopic Structural Dynamics in pH Stimulus-Responsive Hydrogels[J]. Chinese Journal of Chemical Physics, 2020, 33(5): 540 Copy Citation Text show less
(a) Swelling behavior of the poly(DMAEMA-co-AA) hydrogels with time under different pH conditions. (b) pH dependence of the equilibrium swelling ratio (ESR) for the poly(DMAEMA-co-AA) hydrogels
Fig. 1. (a) Swelling behavior of the poly(DMAEMA-co-AA) hydrogels with time under different pH conditions. (b) pH dependence of the equilibrium swelling ratio (ESR) for the poly(DMAEMA-co-AA) hydrogels
The reaction route to prepare the poly(DMAEMA-co-AA) hydrogels.
Fig. 1. The reaction route to prepare the poly(DMAEMA-co-AA) hydrogels.
Swelling kinetic in the poly(DMAEMA-co-AA) hydrogels under different pH conditions. The solid lines are the fitting curves with the expression of ln(SR) = ln\begin{document}$ K $\end{document}+\begin{document}$ n $\end{document}ln\begin{document}$ t $\end{document}
Fig. 2. Swelling kinetic in the poly(DMAEMA-co-AA) hydrogels under different pH conditions. The solid lines are the fitting curves with the expression of ln(SR) = ln\begin{document}$ K $\end{document}+\begin{document}$ n $\end{document}ln\begin{document}$ t $\end{document}
Normalized FTIR spectra of CN stretching in the SCN- anionic probe dissolved in the poly(DMAEMA-co-AA) hydrogels with different pH. The solid lines are the fitting curves using a pseudo-Voigt function [25, 38]. The background signal of poly(DMAEMA-co-AA) without the addition of SCN- has been subtracted
Fig. 3. Normalized FTIR spectra of CN stretching in the SCN- anionic probe dissolved in the poly(DMAEMA-co-AA) hydrogels with different pH. The solid lines are the fitting curves using a pseudo-Voigt function [25, 38]. The background signal of poly(DMAEMA-co-AA) without the addition of SCN- has been subtracted
(a) Vibrational relaxation for the CN stretching of the SCN- anionic probe in the poly(DMAEMA-co-AA) hydrogels under different pH conditions. The solid lines are the fitting curves using a biexponential decay function. (b) pH dependent vibrational lifetime constants of SCN- probe in the poly(DMAEMA-co-AA) hydrogels
Fig. 4. (a) Vibrational relaxation for the CN stretching of the SCN- anionic probe in the poly(DMAEMA-co-AA) hydrogels under different pH conditions. The solid lines are the fitting curves using a biexponential decay function. (b) pH dependent vibrational lifetime constants of SCN- probe in the poly(DMAEMA-co-AA) hydrogels
(a) Rotational anisotropy decay of SCN- anionic probe in the poly(DMAEMA-co-AA) hydrogels under different pH conditions. The solid lines are the fitting curves using a biexponential decay function. (b) pH dependence of the rotational time constants of the SCN- probe in the poly(DMAEMA-co-AA) hydrogels.
Fig. 5. (a) Rotational anisotropy decay of SCN- anionic probe in the poly(DMAEMA-co-AA) hydrogels under different pH conditions. The solid lines are the fitting curves using a biexponential decay function. (b) pH dependence of the rotational time constants of the SCN- probe in the poly(DMAEMA-co-AA) hydrogels.
Table 1. Swelling parameters of the poly(DMAEMA-co-AA) hydrogels under different pH conditions
Table 2. Rotational time constants of the SCN- anion in the poly(DMAEMA-co-AA) hydrogels under different pH conditions
Jian Hong, De-xia Zhou, Hong-xing Hao, Min Zhao, Hong-tao Bian. Ultrafast Infrared Spectroscopic Study of Microscopic Structural Dynamics in pH Stimulus-Responsive Hydrogels[J]. Chinese Journal of Chemical Physics, 2020, 33(5): 540
Download Citation