• Advanced Photonics Nexus
  • Vol. 3, Issue 2, 026004 (2024)
Jinhai Zou1、2、†, Qiujun Ruan1、2, Tingting Chen2, Hang Wang1, Luming Song1, Yikun Bu1, and Zhengqian Luo1、2、*
Author Affiliations
  • 1Xiamen University, School of Electronic Science and Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen, China
  • 2Shenzhen Research Institution of Xiamen University, Shenzhen, China
  • show less
    DOI: 10.1117/1.APN.3.2.026004 Cite this Article Set citation alerts
    Jinhai Zou, Qiujun Ruan, Tingting Chen, Hang Wang, Luming Song, Yikun Bu, Zhengqian Luo. 635 nm femtosecond fiber laser oscillator and amplifier[J]. Advanced Photonics Nexus, 2024, 3(2): 026004 Copy Citation Text show less
    References

    [1] M. E. Fermann, I. Hartl. Ultrafast fibre lasers. Nat. Photonics, 7, 868-874(2013).

    [2] M. Malinauskas et al. Ultrafast laser processing of materials: from science to industry. Light Sci. Appl., 5, e16133(2016).

    [3] D. Graham-Rowe, R. Won. Lasers for engine ignition. Nat. Photonics, 2, 515-517(2008).

    [4] K. Sugioka, Y. Cheng. Ultrafast lasers-reliable tools for advanced materials processing. Light Sci. Appl., 3, e149(2014).

    [5] P. Á. Corkum, F. Krausz. Attosecond science. Nat. Phys., 3, 381-387(2007).

    [6] H. He et al. Deep-tissue two-photon microscopy with a frequency-doubled all-fiber mode-locked laser at 937 nm. Adv. Photonics Nexus, 1, 026001(2022).

    [7] F. Wang et al. Wideband-tuneable, nanotube mode-locked, fibre laser. Nat. Nanotechnol., 3, 738-742(2008).

    [8] Z. Sun et al. Graphene mode-locked ultrafast laser. ACS Nano, 4, 803-810(2010).

    [9] A. Martinez, Z. Sun. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics, 7, 842-845(2013).

    [10] M. Li et al. Mode-locked femtosecond 910 nm Nd: fibre laser with phase biased non-linear loop mirror. Electron. Lett., 53, 1479-1481(2017).

    [11] R. I. Woodward et al. Generation of 70-fs pulses at 2.86  μm from a mid-infrared fiber laser. Opt. Lett., 42, 4893-4896(2017). https://doi.org/10.1364/OL.42.004893

    [12] R. Woodward, M. Majewski, S. Jackson. Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30  μm. APL Photonics, 3, 116106(2018). https://doi.org/10.1063/1.5045799

    [13] J. Ma et al. Review of mid-infrared mode-locked laser sources in the 2.0  μm-3.5  μm spectral region. Appl. Phys. Rev., 6, 021317(2019). https://doi.org/10.1063/1.5037274

    [14] Y. Han et al. Generation, optimization, and application of ultrashort femtosecond pulse in mode-locked fiber lasers. Progr. Quantum Electron., 71, 100264(2020).

    [15] K. Furusawa et al. Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser. Appl. Phys. A, 69, S359-S366(1999).

    [16] J. Krüger, W. Kautek. Femtosecond pulse visible laser processing of fibre composite materials. Appl. Surf. Sci., 106, 383-389(1996).

    [17] Z. Lin, M. Hong. Femtosecond laser precision engineering: from micron, submicron, to nanoscale. Ultrafast Sci., 2021, 9783514(2021).

    [18] G. Hüttmann, C. Yao, E. Endl. New concepts in laser medicine: towards a laser surgery with cellular precision. Med. Laser Appl., 20, 135-139(2005).

    [19] A. D. Ludlow et al. Optical atomic clocks. Rev. Mod. Phys., 87, 637-701(2015).

    [20] A. Bartels, D. Heinecke, S. A. Diddams. Passively mode-locked 10 GHz femtosecond Ti:sapphire laser. Opt. Lett., 33, 1905-1907(2008).

    [21] M. K. Shukla, S. Kumar, R. Das. Single-pass, efficient type-I phase-matched frequency doubling of high-power ultrashort-pulse Yb-fiber laser using LiB3O5. Appl. Phys. B, 122, 1-6(2016). https://doi.org/10.1007/s00340-016-6393-0

    [22] K. Moutzouris et al. Sum frequency generation of continuously tunable blue pulses from a two-branch femtosecond fiber source. Opt. Commun., 274, 417-421(2007).

    [23] J. Cao et al. Femtosecond OPO based on MgO: PPLN synchronously pumped by a 532 nm fiber laser. Laser Phys., 27, 055402(2017).

    [24] R. Smart et al. CW room temperature operation of praseodymium-doped fluorozirconate glass fibre lasers in the blue-green, green and red spectral regions. Opt. Commun., 86, 333-340(1991).

    [25] S. Ji et al. High power downconversion deep-red emission from Ho3+-doped fiber lasers. Nanophotonics, 11, 1603-1609(2022). https://doi.org/10.1515/nanoph-2021-0763

    [26] Y. Fujimoto, O. Ishii, M. Yamazaki. Yellow laser oscillation in Dy3+-doped waterproof fluoro-aluminate glass fibre pumped by 398.8 nm GaN laser diodes. Electron. Lett., 46, 586-587(2010). https://doi.org/10.1049/el.2010.0488

    [27] Z. Luo et al. Compact self-Q-switched green upconversion Er: ZBLAN all-fiber laser operating at 543.4 nm. Opt. Lett., 41, 2258-2261(2016).

    [28] H. Okamoto et al. Visible–NIR tunable Pr3+-doped fiber laser pumped by a GaN laser diode. Opt. Express, 17, 20227-20232(2009). https://doi.org/10.1364/OE.17.020227

    [29] H. Wang et al. High-efficiency, yellow-light Dy3+-doped fiber laser with wavelength tuning from 568.7 to 581.9 nm. Opt. Lett., 44, 4423-4426(2019). https://doi.org/10.1364/OL.44.004423

    [30] J. Zou et al. Tunable, continuous-wave, deep-ultraviolet laser generation by intracavity frequency doubling of visible fiber lasers. J. Lightwave Technol., 40, 3900-3906(2022).

    [31] J. Zou et al. Direct generation of watt-level yellow Dy3+-doped fiber laser. Photonics Res., 9, 446-451(2021). https://doi.org/10.1364/PRJ.410913

    [32] J. Zou et al. 3.6 W compact all-fiber Pr3+-doped green laser at 521 nm. Adv. Photonics, 4, 056001(2022). https://doi.org/10.1117/1.AP.4.5.056001

    [33] C. Zhang et al. Direct generation of 5 W all-fiber red laser at 635 nm. Opt. Laser Technol., 160, 109050(2023).

    [34] E. Kifle et al. Watt-level visible laser in double-clad Pr3+-doped fluoride fiber pumped by a GaN diode. Opt. Lett., 46, 74-77(2021). https://doi.org/10.1364/OL.413673

    [35] M.-P. Lord et al. 2.3 W monolithic fiber laser operating in the visible. Opt. Lett., 46, 2392-2395(2021).

    [36] E. Kifle et al. Deep-red double-clad fiber laser at 717 nm. Opt. Lett., 48, 1494-1497(2023).

    [37] J. Zou et al. 4.1 W all-fiber Pr3+-doped deep-red laser at 717 nm. J. Lightwave Technol., 42, 332-338(2024). https://doi.org/10.1109/JLT.2023.3307811

    [38] W. Li et al. 716 nm deep-red passively Q-switched Pr: ZBLAN all-fiber laser using a carbon-nanotube saturable absorber. Opt. Lett., 42, 671-674(2017).

    [39] J. Zou et al. Visible-wavelength all-fiber vortex laser. IEEE Photonics Technol. Lett., 31, 1487-1490(2019).

    [40] J. Zou et al. Visible-wavelength pulsed lasers with low-dimensional saturable absorbers. Nanophotonics, 9, 2273-2294(2020).

    [41] J. Zou et al. Towards visible-wavelength passively mode-locked lasers in all-fibre format. Light Sci. Appl., 9, 61(2020).

    [42] H. Sun et al. Visible-wavelength all-fiber mode-locked vortex laser. J. Lightwave Technol., 40, 191-195(2022).

    [43] Q. Ruan et al. Visible-wavelength spatiotemporal mode-locked fiber laser delivering 9 ps, 4 nJ pulses at 635 nm. Laser Photonics Rev., 16, 2100678(2022).

    [44] S. Luo et al. High-power yellow DSR pulses generated from a mode-locked Dy:ZBLAN fiber laser. Opt. Lett., 47, 1157-1160(2022).

    [45] S. Luo et al. Ultrafast true-green Ho:ZBLAN fiber laser inspired by the TD3 AI algorithm. Opt. Lett., 47, 5881-5884(2022). https://doi.org/10.1364/OL.476942

    [46] M.-P. Lord et al. Visible femtosecond fiber laser. Opt. Lett., 48, 3709-3712(2023).

    [47] G. Liu et al. Robust 700 MHz mode-locked Yb: fiber laser with a biased nonlinear amplifying loop mirror. Opt. Express, 26, 26003-26008(2018).

    [48] K. Yin et al. Self-starting all-fiber PM Er: laser mode locked by a biased nonlinear amplifying loop mirror. Chin. Phys. B, 28, 124203(2019).

    [49] Y. Song et al. Tunable all-normal-dispersion femtosecond Yb: fiber laser with biased nonlinear amplifying loop mirror. Appl. Phys. Express, 14, 102002(2021).

    [50] S. Wang et al. Femtosecond all-polarization-maintaining Nd fiber laser at 920 nm mode locked by a biased NALM. Opt. Express, 29, 38199-38205(2021).

    [51] Z.-W. Lin et al. 1.7  μm figure-9 Tm-doped ultrafast fiber laser. Opt. Express, 30, 32347-32354(2022). https://doi.org/10.1364/OE.468769

    [52] X. Li et al. Generation of 978 nm dispersion-managed solitons from a polarization-maintaining Yb-doped figure-of-9 fiber laser. Opt. Lett., 48, 3051-3054(2023).

    Jinhai Zou, Qiujun Ruan, Tingting Chen, Hang Wang, Luming Song, Yikun Bu, Zhengqian Luo. 635 nm femtosecond fiber laser oscillator and amplifier[J]. Advanced Photonics Nexus, 2024, 3(2): 026004
    Download Citation