• Photonics Research
  • Vol. 9, Issue 2, 266 (2021)
Xiaoya Ma1, Jun Ye1, Yang Zhang1, Jiangming Xu1、2, Jian Wu1, Tianfu Yao1, Jinyong Leng1, and Pu Zhou1、*
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2e-mail: jmxu1988@163.com
  • show less
    DOI: 10.1364/PRJ.413455 Cite this Article Set citation alerts
    Xiaoya Ma, Jun Ye, Yang Zhang, Jiangming Xu, Jian Wu, Tianfu Yao, Jinyong Leng, Pu Zhou. Vortex random fiber laser with controllable orbital angular momentum mode[J]. Photonics Research, 2021, 9(2): 266 Copy Citation Text show less
    References

    [1] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [2] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon., 3, 161-204(2011).

    [3] M. R. Dennis, K. O’Holleran, M. J. Padgett. Singular optics: optical vortices and polarization singularities. Prog. Opt., 53, 293-363(2009).

    [4] Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, X. Yuan. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [5] W. Zhang, K. Wei, D. Mao, H. Wang, F. Gao, L. Huang, T. Mei, J. Zhao. Generation of femtosecond optical vortex pulse in fiber based on an acoustically induced fiber grating. Opt. Lett., 42, 454-457(2017).

    [6] T. Wang, A. Yang, F. Shi, Y. Huang, J. Wen, X. Zeng. High-order mode lasing in all-FMF laser cavities. Photon. Res., 7, 42-49(2019).

    [7] B. Wang, W. Liu, M. Zhao, J. Wang, Y. Zhang, A. Chen, F. Guan, X. Liu, L. Shi, J. Zi. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat. Photonics, 14, 623-628(2020).

    [8] Y. Zhang, X. Yang, J. Gao. Orbital angular momentum transformation of optical vortex with aluminum metasurfaces. Sci. Rep., 9, 9133(2019).

    [9] S. Fu, T. Wang, C. Gao. Perfect optical vortex array with controllable diffraction order and topological charge. J. Opt. Soc. Am. A, 33, 1836-1842(2016).

    [10] J. Zeng, R. Lin, X. Liu, C. Zhao, Y. Cai. Review on partially coherent vortex beams. Front. Optoelectron., 12, 229-248(2019).

    [11] A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, S. Ashrafi. Optical communications using orbital angular momentum beams. Adv. Opt. Photon., 7, 66-106(2015).

    [12] J. Liu, S. Li, J. Du, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, J. Wang. Performance evaluation of analog signal transmission in an integrated optical vortex emitter to 3.6-km few-mode fiber system. Opt. Lett., 41, 1969-1972(2016).

    [13] D. G. Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).

    [14] D. M. Palacios, I. D. Maleev, A. S. Marathay, G. A. Swartzlander. Spatial correlation singularity of a vortex field. Phys. Rev. Lett., 92, 143905(2004).

    [15] J. Peřina, Z. Bouchal. Non-diffracting beams with controlled spatial coherence. J. Mod. Opt., 49, 1673-1689(2002).

    [16] M. Dong, D. Jiang, N. Luo, Y. Yang. Trapping two types of Rayleigh particles using a focused partially coherent anomalous vortex beam. Appl. Phys. B, 125, 55(2019).

    [17] J. Yu, Y. Huang, F. Wang, X. Liu, G. Gbur, Y. Cai. Scintillation properties of a partially coherent vector beam with vortex phase in turbulent atmosphere. Opt. Express, 27, 26676-26688(2019).

    [18] N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [19] J. Liu, S.-M. Li, L. Zhu, A.-D. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S.-Y. Yu, X.-L. Cai, J. Wang. Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters. Light Sci. Appl., 7, 17148(2018).

    [20] D. Lin, J. Carpenter, Y. Feng, S. Jain, Y. Jung, Y. Feng, M. N. Zervas, D. J. Richardson. Reconfigurable structured light generation in a multicore fibre amplifier. Nat. Commun., 11, 3986(2020).

    [21] F. Brunet, Y. Taillon, P. Galarneau, S. LaRochelle. A simple model describing both self-mode locking and sustained self-pulsing in ytterbium-doped ring fiber lasers. J. Lightwave Technol., 23, 2131-2138(2005).

    [22] Y. Tang, J. Xu. Effects of excited-state absorption on self-pulsing in Tm3+-doped fiber lasers. J. Opt. Soc. Am. B, 27, 179-186(2010).

    [23] J. Xu, Z. Lou, J. Ye, J. Wu, J. Leng, H. Xiao, H. Zhang, P. Zhou. Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects. Opt. Express, 25, 5609-5617(2017).

    [24] N. Jhajj, I. Larkin, E. W. Rosenthal, S. Zahedpour, J. K. Wahlstrand, H. M. Milchberg. Spatiotemporal optical vortices. Phys. Rev. X, 6, 031037(2016).

    [25] S. W. Hancock, S. Zahedpour, A. Goffin, H. M. Milchberg. Free-space propagation of spatiotemporal optical vortices. Optica, 6, 1547-1553(2019).

    [26] L. Rego, K. Dorney, N. Brooks, Q. Nguyen, C.-T. Liao, J. San Roman, D. Couch, A. Liu, E. Pisanty, M. Lewenstein, L. Plaja, H. Kapteyn, M. Murnane, C. Hernández-García. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science, 364, eaaw9486(2019).

    [27] A. Chong, C. Wan, J. Chen, Q. Zhan. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photonics, 14, 350-354(2020).

    [28] S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, E. V. Podivilov. Random distributed feedback fibre laser. Nat. Photonics, 4, 231-235(2010).

    [29] S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, E. V. Podivilov. Random distributed feedback fibre lasers. Phys. Rep., 542, 133-193(2014).

    [30] P. Rosa, M. Tan, S. T. Le, I. D. Philips, J. D. Ania-Castañón, S. Sygletos, P. Harper. Unrepeatered DP-QPSK transmission over 352.8  km SMF using random DFB fiber laser amplification. IEEE Photon. Technol. Lett., 27, 1189-1192(2015).

    [31] M. Tan, P. Rosa, S. T. Le, M. A. Iqbal, I. Phillips, P. Harper. Transmission performance improvement using random DFB laser based Raman amplification and bidirectional second-order pumping. Opt. Express, 24, 2215-2221(2016).

    [32] D. Leandro, V. deMiguel Soto, R. A. Perez-Herrera, M. B. Acha, M. López-Amo. Random DFB fiber laser for remote (200  km) sensor monitoring using hybrid WDM/TDM. J. Lightwave Technol., 34, 4430-4436(2016).

    [33] S. Rota-Rodrigo, B. Gouhier, C. Dixneuf, L. Antoni-Micollier, G. Guiraud, D. Leandro, M. Lopez-Amo, N. Traynor, G. Santarelli. Watt-level green random laser at 532  nm by SHG of a Yb-doped fiber laser. Opt. Lett., 43, 4284-4287(2018).

    [34] W. Pan, L. Zhang, H. Jiang, X. Yang, S. Cui, Y. Feng. Ultrafast Raman fiber laser with random distributed feedback. Laser Photon. Rev., 12, 1700326(2018).

    [35] Z. Wang, H. Wu, M. Fan, L. Zhang, Y. Rao, W. Zhang, X. Jia. High power random fiber laser with short cavity length: theoretical and experimental investigations. IEEE J. Sel. Top. Quantum Electron., 21, 10-15(2015).

    [36] H. Zhang, L. Huang, J. Song, H. Wu, P. Zhou, X. Wang, J. Wu, J. Xu, Z. Wang, X. Xu, Y. Rao. Quasi-kilowatt random fiber laser. Opt. Lett., 44, 2613-2616(2019).

    [37] Z. Wang, P. Yan, Y. Huang, J. Tian, C. Cai, D. Li, Y. Yi, Q. Xiao, M. Gong. An efficient 4-kW level random fiber laser based on a tandem-pumping scheme. IEEE Photon. Technol. Lett., 31, 817-820(2019).

    [38] J. Xu, L. Huang, M. Jiang, J. Ye, P. Ma, J. Leng, J. Wu, H. Zhang, P. Zhou. Near-diffraction-limited linearly polarized narrow-linewidth random fiber laser with record kilowatt output. Photon. Res., 5, 350-354(2017).

    [39] E. A. Zlobina, S. I. Kablukov, S. A. Babin. Linearly polarized random fiber laser with ultimate efficiency. Opt. Lett., 40, 4074-4077(2015).

    [40] Z. Hu, R. Ma, X. Zhang, Z. Sun, X. Liu, J. Liu, K. Xie, L. Zhang. Weak feedback assisted random fiber laser from 45°-tilted fiber Bragg grating. Opt. Express, 27, 3255-3263(2019).

    [41] V. Balaswamy, S. Aparanji, S. Arun, S. Ramachandran, V. R. Supradeepa. High-power, widely wavelength tunable, grating-free Raman fiber laser based on filtered feedback. Opt. Lett., 44, 279-282(2019).

    [42] J. Ye, Y. Zhang, J. Xu, J. Song, T. Yao, H. Xiao, J. Leng, P. Zhou. Broadband pumping enabled flat-amplitude multi-wavelength random Raman fiber laser. Opt. Lett., 45, 1786-1789(2020).

    [43] X. Jin, Z. Lou, H. Zhang, J. Xu, P. Zhou, Z. Liu. Random distributed feedback fiber laser at 2.1  μm. Opt. Lett., 41, 4923-4926(2016).

    [44] X. P. Zeng, W. L. Zhang, R. Ma, Z. J. Yang, X. Zeng, X. Dong, Y. J. Rao. Regulation of a pulsed random fiber laser in the Q-switched regime. Laser Phys. Lett., 13, 115105(2016).

    [45] J. Xu, J. Ye, W. Liu, J. Wu, H. Zhang, J. Leng, P. Zhou. Passively spatiotemporal gain-modulation-induced stable pulsing operation of a random fiber laser. Photon. Res., 5, 598-603(2017).

    [46] R. Ma, Y. J. Rao, W. L. Zhang, B. Hu. Multimode random fiber laser for speckle-free imaging. IEEE J. Sel. Top. Quantum Electron., 25, 2833472(2019).

    [47] B. Redding, M. A. Choma, H. Cao. Speckle-free laser imaging using random laser illumination. Nat. Photonics, 6, 355-359(2012).

    [48] S. Sugavanam, M. Sorokina, D. V. Churkin. Spectral correlations in a random distributed feedback fibre laser. Nat. Commun., 8, 15514(2017).

    [49] M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, J. P. Woerdman. Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun., 112, 321-327(1994).

    [50] Y. Shen, G. T. Campbell, B. Hage, H. Zou, B. C. Buchler, P. K. Lam. Generation and interferometric analysis of high charge optical vortices. J. Opt., 15, 044005(2013).

    [51] W. Huang, J. Li, H. Wang, J. Wang, S. Gao. Vortex electromagnetic waves generated by using a laddered spiral phase plate and a microstrip antenna. Electromagnetics, 36, 102-110(2016).

    [52] C. Wang, T. Liu, Y. Ren, Q. Shao, H. Dong. Generating optical vortex with large topological charges by spiral phase plates in cascaded and double-pass configuration. Optik, 171, 404-412(2018).

    [53] S. N. Khonina, A. V. Ustinov, V. I. Logachev, A. P. Porfirev. Properties of vortex light fields generated by generalized spiral phase plates. Phys. Rev. A, 101, 043829(2020).

    [54] M. S. Whalen, T. H. Wood. Effectively nonreciprocal evanescent-wave optical-fibre directional coupler. Electron. Lett., 21, 175-176(1985).

    [55] T. Wang, F. Wang, F. Shi, F. Pang, S. Huang, T. Wang, X. Zeng. Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler. J. Lightwave Technol., 35, 2161-2166(2017).

    [56] H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, L. Zhang. High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler. Opt. Express, 25, 11444-11451(2017).

    [57] C. Dong, J. Zou, H. Wang, H. Yao, X. Zeng, Y. Bu, Z. Luo. Visible-light all-fiber vortex lasers based on mode selective couplers. Chin. Phys. B, 29, 094204(2020).

    Xiaoya Ma, Jun Ye, Yang Zhang, Jiangming Xu, Jian Wu, Tianfu Yao, Jinyong Leng, Pu Zhou. Vortex random fiber laser with controllable orbital angular momentum mode[J]. Photonics Research, 2021, 9(2): 266
    Download Citation