• Chinese Optics Letters
  • Vol. 21, Issue 10, 101901 (2023)
Lei Shi1, Yuanjun Song1, Jie Tang2、3, Yanyan Qin1, Xiaomei Xue4, Huanli Zhou1, Zexian Chen1, Xuan Li1, Guang Qian2、3, Xiaoyang Zhang1、5, and Tong Zhang1、4、5、*
Author Affiliations
  • 1Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
  • 2National Key Laboratory of Solid-State Microwave Devices and Circuits, Nanjing 210016, China
  • 3Nanjing Electronic Devices Institute, Nanjing 210016, China
  • 4Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, and School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
  • 5Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Southeast University Suzhou Campus, Suzhou 215123, China
  • show less
    DOI: 10.3788/COL202321.101901 Cite this Article Set citation alerts
    Lei Shi, Yuanjun Song, Jie Tang, Yanyan Qin, Xiaomei Xue, Huanli Zhou, Zexian Chen, Xuan Li, Guang Qian, Xiaoyang Zhang, Tong Zhang, "Review of advanced progress of χ2-based all-optical devices on thin-film lithium niobate," Chin.Opt.Lett. 21, 101901 (2023) Copy Citation Text show less
    References

    [1] R. Wu, L. Gao, Y. Liang, Y. Zheng, J. Zhou, H. Qi, D. Yin, M. Wang, Z. Fang, Y. Cheng. High-production-rate fabrication of low-loss lithium niobate electro-optic modulators using photolithography assisted chemo-mechanical etching (PLACE). Micromachines, 13, 378(2022).

    [2] T. Gaur, P. Mishra, G. Hegde, T. Srinivas. Modeling and analysis of device orientation, analog and digital performance of electrode design for high speed electro-optic modulator. Photonics, 10, 301(2023).

    [3] S. Zhu, Y. Zhang, Y. Ren, Y. Wang, K. Zhai, H. Feng, Y. Jin, Z. Lin, J. Feng, S. Li, Q. Yang, N. H. Zhu, E. Y.-B. Pun, C. Wang. Waveguide-integrated two-dimensional material photodetectors in thin-film lithium niobate(2022).

    [4] S. Dutta, Y. Zhao, U. Saha, D. Farfurnik, E. A. Goldschmidt, E. Waks. An atomic frequency comb memory in rare-earth-doped thin-film lithium niobate. ACS Photonics, 10, 1104(2023).

    [5] F. I. Baida, J. J. Robayo Yepes, A. Ndao. Giant second harmonic generation in etch-less lithium niobate thin film. J. Appl. Phys., 133, 124501(2023).

    [6] G. H. Y. Li, R. Sekine, R. Nehra, R. M. Gray, L. Ledezma, Q. Guo, A. Marandi. All-optical ultrafast ReLU function for energy-efficient nanophotonic deep learning. Nanophotonics, 12, 847(2023).

    [7] J. Ling, J. Staffa, H. Wang, B. Shen, L. Chang, U. A. Javid, L. Wu, Z. Yuan, R. Lopez-Rios, M. Li, Y. He, B. Li, J. E. Bowers, K. J. Vahala, Q. Lin. Self-injection locked frequency conversion laser. Laser Photonics Rev., 17, 2200663(2023).

    [8] J. Mishra, T. P. McKenna, E. Ng, H. S. Stokowski, M. Jankowski, C. Langrock, D. Heydari, H. Mabuchi, M. M. Fejer, A. H. Safavi-Naeini. Mid-infrared nonlinear optics in thin-film lithium niobate on sapphire. Optica, 8, 921(2021).

    [9] B. S. Elkus, K. Abdelsalam, S. Fathpour, P. Kumar, G. S. Kanter. Quantum-correlated photon-pair generation via cascaded nonlinearity in an ultra-compact lithium-niobate nano-waveguide. Opt. Express, 28, 39963(2020).

    [10] C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, M. Lončar. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 5, 1438(2018).

    [11] J. Lu, A. Al Sayem, Z. Gong, J. B. Surya, C.-L. Zou, H. X. Tang. Ultralow-threshold thin-film lithium niobate optical parametric oscillator. Optica, 8, 539(2021).

    [12] J. Hamazaki, Y. Ogawa, T. Kishimoto, S. Hayashi, N. Sekine, I. Hosako. Conversion efficiency improvement of terahertz wave generation laterally emitted by a ridge-type periodically poled lithium niobate. Opt. Express, 30, 11472(2022).

    [13] I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, R. Ito. Absolute scale of second-order nonlinear-optical coefficients. J. Opt. Soc. Am. B, 14, 2268(1997).

    [14] W. H. P. Pernice, C. Xiong, C. Schuck, H. X. Tang. Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators. Appl. Phys. Lett., 100, 223501(2012).

    [15] J. Lin, F. Bo, Y. Cheng, J. Xu. Advances in on-chip photonic devices based on lithium niobate on insulator. Photonics Res., 8, 1910(2020).

    [16] M. De Micheli, J. Botineau, P. Sibillot, D. B. Ostrowsky, M. Papuchon. Fabrication and characterization of titanium indiffused proton exchanged (TIPE) waveguides in lithium niobate. Opt. Commun., 42, 101(1982).

    [17] M. De Micheli, J. Botineau, S. Neveu, P. Sibillot, D. B. Ostrowsky, M. Papuchon. Independent control of index and profiles in proton-exchanged lithium niobate guides. Opt. Lett., 8, 114(1983).

    [18] P. M. Read, S. P. Speakman, M. D. Hudson, L. Considine. An ion beam investigation of the preliminary stages of titanium indiffusion in lithium niobate waveguides. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., 15, 398(1986).

    [19] I. E. Barry, G. W. Ross, P. G. R. Smith, R. W. Eason. Ridge waveguides in lithium niobate fabricated by differential etching following spatially selective domain inversion. Appl. Phys. Lett., 74, 1487(1999).

    [20] R. V. Schmidt, I. P. Kaminow. Metal-diffused optical waveguides in LiNbO3. Appl. Phys. Lett., 25, 458(1974).

    [21] A. Rao, K. Abdelsalam, T. Sjaardema, A. Honardoost, G. F. Camacho-Gonzalez, S. Fathpour. Actively monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600% W−1 cm−2. Opt. Express, 27, 25920(2019).

    [22] J. Sun, C.-Q. Xu. Green-induced infrared absorption in annealed proton-exchanged MgO:LiNbO3 waveguides. J. Opt. Soc. Am. B, 31, 2779(2014).

    [23] M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, H. Bakhru. Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl. Phys. Lett., 73, 2293(1998).

    [24] Y. Jia, L. Wang, F. Chen. Ion-cut lithium niobate on insulator technology: recent advances and perspectives. Appl. Phys. Rev., 8, 011307(2021).

    [25] G. Poberaj, H. Hu, W. Sohler, P. Günter. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev., 6, 488(2012).

    [26] A. Honardoost, K. Abdelsalam, S. Fathpour. Rejuvenating a versatile photonic material: thin-film lithium niobate. Laser Photonics Rev., 14, 2000088(2020).

    [27] A. Boes, B. Corcoran, L. Chang, J. Bowers, A. Mitchell. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev., 12, 1700256(2018).

    [28]

    [29] J. Zhao, C. Ma, M. Rüsing, S. Mookherjea. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys. Rev. Lett., 124, 163603(2020).

    [30] J. Yang, C. Wang. Efficient terahertz generation scheme in a thin-film lithium niobate-silicon hybrid platform. Opt. Express, 29, 16477(2021).

    [31] H. T. Olgun, W. Tian, G. Cirmi, K. Ravi, C. Rentschler, H. Çankaya, M. Pergament, M. Hemmer, Y. Hua, D. N. Schimpf, N. H. Matlis, F. X. Kärtner. Highly efficient generation of narrowband terahertz radiation driven by a two-spectral-line laser in PPLN. Opt. Lett., 47, 2374(2022).

    [32] Q. Guo, R. Sekine, L. Ledezma, R. Nehra, D. J. Dean, A. Roy, R. M. Gray, S. Jahani, A. Marandi. Femtojoule femtosecond all-optical switching in lithium niobate nanophotonics. Nat. Photonics, 16, 625(2022).

    [33] P. Minzioni, C. Lacava, T. Tanabe, J. Dong, X. Hu, G. Csaba, W. Porod, G. Singh, A. E. Willner, A. Almaiman, V. Torres-Company, J. Schröder, A. C. Peacock, M. J. Strain, F. Parmigiani, G. Contestabile, D. Marpaung, Z. Liu, J. E. Bowers, L. Chang, S. Fabbri, M. R. Vázquez, V. Bharadwaj, S. M. Eaton, P. Lodahl, X. Zhang, B. J. Eggleton, W. J. Munro, K. Nemoto, O. Morin, J. Laurat, J. Nunn. Roadmap on all-optical processing. J. Opt., 21, 063001(2019).

    [34] D. Zhu, L. Shao, M. Yu, R. Cheng, B. Desiatov, C. J. Xin, Y. Hu, J. Holzgrafe, S. Ghosh, A. Shams-Ansari, E. Puma, N. Sinclair, C. Reimer, M. Zhang, M. Lončar. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics, 13, 242(2021).

    [35] G. Chen, N. Li, J. D. Ng, H.-L. Lin, Y. Zhou, Y. H. Fu, L. Y. T. Lee, Y. Yu, A.-Q. Liu, A. J. Danner. Advances in lithium niobate photonics: development status and perspectives. Adv. Photonics, 4, 034003(2022).

    [36] M. G. Vazimali, S. Fathpour. Applications of thin-film lithium niobate in nonlinear integrated photonics. Adv. Photonics, 4, 034001(2022).

    [37] Y. Zheng, X. Chen. Nonlinear wave mixing in lithium niobate thin film. Adv. Phys. X, 6, 1889402(2021).

    [38] Y. Qi, Y. Li. Integrated lithium niobate photonics. Nanophotonics, 9, 1287(2020).

    [39] P. A. Franken, J. F. Ward. Optical harmonics and nonlinear phenomena. Rev. Mod. Phys., 35, 23(1963).

    [40] T. Park, H. S. Stokowski, V. Ansari, T. P. McKenna, A. Y. Hwang, M. M. Fejer, A. H. Safavi-Naeini. High-efficiency second harmonic generation of blue light on thin-film lithium niobate. Opt. Lett., 47, 2706(2022).

    [41] R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, Q. Lin. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt. Express, 25, 24531(2017).

    [42] M. Jankowski, J. Mishra, M. M. Fejer. Dispersion-engineered χ(2) nanophotonics: a flexible tool for nonclassical light. J. Phys. Photonics, 3, 042005(2021).

    [43] R. W. Boyd. Nonlinear Optics(2008).

    [44] C. Lu, Y. Zhang, J. Qiu, Y. Tang, T. Ding, S. Liu, Y. Zheng, X. Chen. Highly tunable birefringent phase-matched second-harmonic generation in an angle-cut lithium niobate-on-insulator ridge waveguide. Opt. Lett., 47, 1081(2022).

    [45] L. Wang, X. Zhang, F. Chen. Efficient second harmonic generation in a reverse-polarization dual-layer crystalline thin film nanophotonic waveguide. Laser Photonics Rev., 15, 2100409(2021).

    [46] F. Ye, Y. Yu, X. Xi, X. Sun. Second-harmonic generation in etchless lithium niobate nanophotonic waveguides with bound states in the continuum. Laser Photonics Rev., 16, 2100429(2022).

    [47] X. Li, J. Ma, S. Liu, P. Huang, B. Chen, D. Wei, J. Liu. Efficient second harmonic generation by harnessing bound states in the continuum in semi-nonlinear etchless lithium niobate waveguides. Light Sci. Appl., 11, 317(2022).

    [48] C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, M. Lončar. Second harmonic generation in nano-structured thin-film lithium niobate waveguides. Opt. Express, 25, 6963(2017).

    [49] R. Luo, Y. He, H. Liang, M. Li, Q. Lin. Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica, 5, 1006(2018).

    [50] R. Luo, Y. He, H. Liang, M. Li, Q. Lin. Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation. Laser Photonics Rev., 13, 1800288(2019).

    [51] A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, S. Fathpour. Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation. Appl. Phys. Lett., 110, 111109(2017).

    [52] L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, J. E. Bowers. Thin film wavelength converters for photonic integrated circuits. Optica, 3, 531(2016).

    [53] C. Lu, H. Li, J. Qiu, Y. Zhang, S. Liu, Y. Zheng, X. Chen. Second and cascaded harmonic generation of pulsed laser in a lithium niobate on insulator ridge waveguide. Opt. Express, 30, 1381(2022).

    [54] M. Jankowski, C. Langrock, B. Desiatov, A. Marandi, C. Wang, M. Zhang, C. R. Phillips, M. Lončar, M. M. Fejer. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica, 7, 40(2020).

    [55] A. Al Sayem, Y. Wang, J. Lu, X. Liu, A. W. Bruch, H. X. Tang. Efficient and tunable blue light generation using lithium niobate nonlinear photonics. Appl. Phys. Lett., 119, 231104(2021).

    [56] Y. Niu, C. Lin, X. Liu, Y. Chen, X. Hu, Y. Zhang, X. Cai, Y.-X. Gong, Z. Xie, S. Zhu. Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains. Appl. Phys. Lett., 116, 101104(2020).

    [57] J. Zhao, M. Rüsing, U. A. Javid, J. Ling, M. Li, Q. Lin, S. Mookherjea. Shallow-etched thin-film lithium niobate waveguides for highly-efficient second-harmonic generation. Opt. Express, 28, 19669(2020).

    [58] J. Lu, M. Li, C.-L. Zou, A. Al Sayem, H. X. Tang. Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators. Optica, 7, 1654(2020).

    [59] A. Boes, L. Chang, M. Knoerzer, T. G. Nguyen, J. D. Peters, J. E. Bowers, A. Mitchell. Improved second harmonic performance in periodically poled LNOI waveguides through engineering of lateral leakage. Opt. Express, 27, 23919(2019).

    [60] J. Chen, Y. Meng Sua, Z. Ma, C. Tang, Z. Li, Y. Huang. Efficient parametric frequency conversion in lithium niobate nanophotonic chips. OSA Contin., 2, 2914(2019).

    [61] X. Wu, L. Zhang, Z. Hao, R. Zhang, R. Ma, F. Bo, G. Zhang, J. Xu. Broadband second-harmonic generation in step-chirped periodically poled lithium niobate waveguides. Opt. Lett., 47, 1574(2022).

    [62] L. Ge, Y. Chen, H. Jiang, G. Li, B. Zhu, Y. Liu, X. Chen. Broadband quasi-phase matching in a MgO:PPLN thin film. Photonics Res., 6, 954(2018).

    [63] D. V. Strekalov, A. A. Savchenkov, A. B. Matsko, N. Yu. Efficient upconversion of subterahertz radiation in a high-Q whispering gallery resonator. Opt. Lett., 34, 713(2009).

    [64] L. Ma, O. Slattery, X. Tang. Single photon frequency up-conversion and its applications. Phys. Rep., 521, 69(2012).

    [65] G. Li, Y. Chen, H. Jiang, X. Chen. Broadband sum-frequency generation using d33 in periodically poled LiNbO3 thin film in the telecommunications band. Opt. Lett., 42, 939(2017).

    [66] J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, L. Qiao, W. Fang, F. Bo, Y. Cheng. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys. Rev. Lett., 122, 173903(2019).

    [67] S. Liu, Y. Zheng, X. Chen. Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk. Opt. Lett., 42, 3626(2017).

    [68] X. Ye, S. Liu, Y. Chen, Y. Zheng, X. Chen. Sum-frequency generation in lithium-niobate-on-insulator microdisk via modal phase matching. Opt. Lett., 45, 523(2020).

    [69] Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo, F. Gao, G. Zhang, J. Xu. Sum-frequency generation in on-chip lithium niobate microdisk resonators. Photonics Res., 5, 623(2017).

    [70] R. Wolf, I. Breunig, H. Zappe, K. Buse. Cascaded second-order optical nonlinearities in on-chip micro rings. Opt. Express, 25, 29927(2017).

    [71] M. Wang, N. Yao, R. Wu, Z. Fang, S. Lv, J. Zhang, J. Lin, W. Fang, Y. Cheng. Strong nonlinear optics in on-chip coupled lithium niobate microdisk photonic molecules. New J. Phys., 22, 073030(2020).

    [72] A. Savchenkov, E. Lopez, I. Solomatine, D. Eliyahu, A. Matsko, L. Maleki. Spectral purity improvement in flickering self-injection locked lasers. IEEE J. Quantum Electron., 58, 2200209(2022).

    [73] J. Wang, B. Zhu, Z. Hao, F. Bo, X. Wang, F. Gao, Y. Li, G. Zhang, J. Xu. Thermo-optic effects in on-chip lithium niobate microdisk resonators. Opt. Express, 24, 21869(2016).

    [74] J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, Y. Cheng. Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator. Nanomaterials, 9, 1218(2019).

    [75] R. Zhuang, J. He, Y. Qi, Y. Li. High-Q thin-film lithium niobate microrings fabricated with wet etching. Adv. Mater., 35, 2208113(2023).

    [76] R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, Y. Cheng. Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett., 43, 4116(2018).

    [77] R. Gao, N. Yao, J. Guan, L. Deng, J. Lin, M. Wang, L. Qiao, W. Fang, Y. Cheng. Lithium niobate microring with ultra-high Q factor above 108. Chin. Opt. Lett., 20, 011902(2022).

    [78] J. Mishra, T. P. McKenna, E. Ng, H. S. Stokowski, M. Jankowski, C. Langrock, D. Heydari, H. Mabuchi, M. M. Fejer, A. H. Safavi-Naeini. Mid-infrared nonlinear optics in thin-film lithium niobate on sapphire. Optica, 8, 921(2021).

    [79] T. Umeki, M. Asobe, O. Tadanaga, H. Takara, Y. Miyamoto, H. Takenouchi. Phase sensitive amplifiers based on PPLN waveguides for optical communication. 12th International Conference on Optical Internet 2014 (COIN), 1(2014).

    [80] T. Kobayashi, S. Shimizu, M. Nakamura, T. Umeki, T. Kazama, R. Kasahara, F. Hamaoka, M. Nagatani, H. Yamazaki, T. Mizuno, H. Nosaka, Y. Miyamoto. Wideband inline-amplified WDM transmission using PPLN-based OPA with over-10-THz bandwidth. Optical Fiber Communications Conference and Exhibition (OFC), Th4C.7(2020).

    [81] Á. D. Szabö, V. Ribeiro, V. Gordienko, F. Ferreira, C. Gaur, N. Doran. Verification of signal-to-crosstalk measurements for WDM fiber optical parametric amplifiers. Conference on Lasers and Electro-Optics, JTu2E.1(2020).

    [82] Y. Sun, H. Tu, S. You, C. Zhang, Y.-Z. Liu, S. A. Boppart. Detection of weak near-infrared optical imaging signals under ambient light by optical parametric amplification. Opt. Lett., 44, 4391(2019).

    [83] W. Zhao, J. Yang, J. Zhang, W. Wang, T. Zhang, L. Han, D. Cui, Q. Peng, Z. Xu. Efficient optical image amplifier using periodically poled lithium niobate. Appl. Opt., 54, 9172(2015).

    [84] S. Kumar, A. E. Willner, D. Gurkan, K. R. Parameswaran, M. M. Fejer. All-optical half adder using an SOA and a PPLN waveguide for signal processing in optical networks. Opt. Express, 14, 10255(2006).

    [85] L. Eldada. Optical communication components. Rev. Sci. Instrum., 75, 575(2004).

    [86] X. Xu, M. Tan, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, D. G. Hicks, R. Morandotti, A. Mitchell, D. J. Moss. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589, 44(2021).

    [87] J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. Pernice, H. Bhaskaran. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52(2021).

    [88] M. V. Chekhova, Z. Y. Ou. Nonlinear interferometers in quantum optics. Adv. Opt. Photonics, 8, 104(2016).

    [89] R. Schnabel. Squeezed states of light and their applications in laser interferometers. Phys. Rep., 684, 1(2017).

    [90] N. Volet, A. Spott, E. J. Stanton, M. L. Davenport, L. Chang, J. D. Peters, T. C. Briles, I. Vurgaftman, J. R. Meyer, J. E. Bowers. Semiconductor optical amplifiers at 2.0-µm wavelength on silicon. Laser Photonics Rev., 11, 1600165(2017).

    [91] J. Riemensberger, N. Kuznetsov, J. Liu, J. He, R. N. Wang, T. J. Kippenberg. A photonic integrated continuous-travelling-wave parametric amplifier. Nature, 612, 56(2022).

    [92] Y. Liang, J. Zhou, Z. Liu, H. Zhang, Z. Fang, Y. Zhou, D. Yin, J. Lin, J. Yu, R. Wu, M. Wang, Y. Cheng. A high-gain cladded waveguide amplifier on erbium doped thin-film lithium niobate fabricated using photolithography assisted chemo-mechanical etching. Nanophotonics, 11, 1033(2022).

    [93] Z. Chen, Q. Xu, K. Zhang, W.-H. Wong, D.-L. Zhang, E. Y.-B. Pun, C. Wang. Efficient erbium-doped thin-film lithium niobate waveguide amplifiers. Opt. Lett., 46, 1161(2021).

    [94] Q. Luo, C. Yang, Z. Hao, R. Zhang, D. Zheng, F. Bo, Y. Kong, G. Zhang, J. Xu. On-chip erbium-doped lithium niobate waveguide amplifiers [Invited]. Chin. Opt. Lett., 19, 060008(2021).

    [95] Y. M. Sua, J.-Y. Chen, Y.-P. Huang. Ultra-wideband and high-gain parametric amplification in telecom wavelengths with an optimally mode-matched PPLN waveguide. Opt. Lett., 43, 2965(2018).

    [96] T. Kishimoto, K. Inafune, Y. Ogawa, H. Sasaki, H. Murai. Highly efficient phase-sensitive parametric gain in periodically poled LiNbO3 ridge waveguide. Opt. Lett., 41, 1905(2016).

    [97] T. Kazama, T. Umeki, S. Shimizu, T. Kashiwazaki, K. Enbutsu, R. Kasahara, Y. Miyamoto, K. Watanabe. Over-30-dB gain and 1-dB noise figure phase-sensitive amplification using a pump-combiner-integrated fiber I/O PPLN module. Opt. Express, 29, 28824(2021).

    [98] L. Ledezma, R. Sekine, Q. Guo, R. Nehra, S. Jahani, A. Marandi. Intense optical parametric amplification in dispersion-engineered nanophotonic lithium niobate waveguides. Optica, 9, 303(2022).

    [99] C. E. Rüter, K. Hasse, F. Chen, D. Kip. Optical characterization of a neodymium-doped lithium-niobate-on-insulator (LNOI). Opt. Mater. Express, 11, 4007(2021).

    [100] Q. Luo, C. Yang, Z. Hao, R. Zhang, R. Ma, D. Zheng, H. Liu, X. Yu, F. Gao, F. Bo, Y. Kong, G. Zhang, J. Xu. Integrated ytterbium-doped lithium niobate microring lasers. Opt. Lett., 47, 1427(2022).

    [101] S. Shimizu, T. Kobayashi, T. Kazama, T. Umeki, M. Nakamura, K. Enbutsu, T. Kashiwazaki, R. Kasahara, K. Watanabe, Y. Miyamoto. PPLN-based optical parametric amplification for wideband WDM transmission. J. Light. Technol., 40, 3374(2022).

    [102] M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta. Broad-band optical parametric gain on a silicon photonic chip. Nature, 441, 960(2006).

    [103] C. Op de Beeck, B. Haq, L. Elsinger, A. Gocalinska, E. Pelucchi, B. Corbett, G. Roelkens, B. Kuyken. Heterogeneous III-V on silicon nitride amplifiers and lasers via microtransfer printing. Optica, 7, 386(2020).

    [104] E. A. Kittlaus, H. Shin, P. T. Rakich. Large Brillouin amplification in silicon. Nat. Photonics, 10, 463(2016).

    [105] V. Sih, S. Xu, Y.-H. Kuo, H. Rong, M. Paniccia, O. Cohen, O. Raday. Raman amplification of 40 Gb/s data in low-loss silicon waveguides. Opt. Express, 15, 357(2007).

    [106] M. Jankowski, N. Jornod, C. Langrock, B. Desiatov, A. Marandi, M. Lončar, M. M. Fejer. Quasi-static optical parametric amplification. Optica, 9, 273(2022).

    [107] L. Ledezma, A. Roy, L. Costa, R. Sekine, R. Gray, Q. Guo, R. Nehra, R. M. Briggs, A. Marandi. Octave-spanning tunable parametric oscillator in nanophotonics(2022).

    [108] Y. Wu, S. Liang, Q. Fu, L. Xu, D. J. Richardson. Compact picosecond mid-IR PPLN OPO with controllable peak powers. OSA Contin., 3, 2741(2020).

    [109] C. Xi, P. Wang, X. Li, Z. Liu. Highly efficient continuous-wave mid-infrared generation based on intracavity difference frequency mixing. High Power Laser Sci. Eng., 7, e67(2019).

    [110] N. Amiune, D. N. Puzyrev, V. V. Pankratov, D. V. Skryabin, K. Buse, I. Breunig. Optical-parametric-oscillation-based χ(2) frequency comb in a lithium niobate microresonator. Opt. Express, 29, 41378(2021).

    [111] P. Jiang, C. Hu, T. Chen, P. Wu, B. Wu, R. Wen, Y. Shen. High power Yb fiber laser with picosecond bursts and the quasi-synchronously pumping for efficient midinfrared laser generation in optical parametric oscillator. IEEE Photon. J., 8, 1501807(2016).

    [112] P. Wang, X. Cheng, X. Li, X. Xu. Tunable dual-wavelength, continuous-wave, mid-infrared generation using intracavity difference frequency mixing in PPLN-based optical parametric oscillator. IEEE J. Sel. Top. Quantum Electron., 24, 0902807(2018).

    [113] R. Gao, H. Zhang, F. Bo, W. Fang, Z. Hao, N. Yao, J. Lin, J. Guan, L. Deng, M. Wang, L. Qiao, Y. Cheng. Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 108. New J. Phys., 23, 123027(2021).

    [114] C. Yan, S. Wang, S. Zhao, Y. Huang, H. Zhou, G. Deng, S. Wang, S. Zhou. Efficient and temperature-tunable second-harmonic generation in a thin film lithium niobate on insulator microdisk. Appl. Phys. Lett., 122, 103504(2023).

    [115] R. Wolf, Y. Jia, S. Bonaus, C. S. Werner, S. J. Herr, I. Breunig, K. Buse, H. Zappe. Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries. Optica, 5, 872(2018).

    [116] J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, H. X. Tang. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica, 6, 1455(2019).

    [117] T. P. McKenna, H. S. Stokowski, V. Ansari, J. Mishra, M. Jankowski, C. J. Sarabalis, J. F. Herrmann, C. Langrock, M. M. Fejer, A. H. Safavi-Naeini. Ultra-low-power second-order nonlinear optics on a chip. Nat. Commun., 13, 4532(2022).

    [118] M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, M. Lončar. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373(2019).

    [119] Y. Hu, M. Yu, B. Buscaino, N. Sinclair, D. Zhu, R. Cheng, A. Shams-Ansari, L. Shao, M. Zhang, J. M. Kahn, M. Lončar. High-efficiency and broadband on-chip electro-optic frequency comb generators. Nat. Photonics, 16, 679(2022).

    [120] A. Shams-Ansari, M. Yu, Z. Chen, C. Reimer, M. Zhang, N. Picqué, M. Lončar. Thin-film lithium-niobate electro-optic platform for spectrally tailored dual-comb spectroscopy. Commun. Phys., 5, 88(2022).

    [121] K. Zhang, W. Sun, Y. Chen, H. Feng, Y. Zhang, Z. Chen, C. Wang. A power-efficient integrated lithium niobate electro-optic comb generator. Commun. Phys., 6, 17(2023).

    [122] Z. Fang, S. Haque, S. Farajollahi, H. Luo, J. Lin, R. Wu, J. Zhang, Z. Wang, M. Wang, Y. Cheng, T. Lu. Polygon coherent modes in a weakly perturbed whispering gallery microresonator for efficient second harmonic, optomechanical, and frequency comb generations. Phys. Rev. Lett., 125, 173901(2020).

    [123] L. Chang, S. Liu, J. E. Bowers. Integrated optical frequency comb technologies. Nat. Photonics, 16, 95(2022).

    [124] Z. Gong, M. Shen, J. Lu, J. B. Surya, H. X. Tang. Monolithic Kerr and electro-optic hybrid microcombs. Optica, 9, 1060(2022).

    [125] C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, M. Lončar. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun., 10, 978(2019).

    [126] Y. Okawachi, M. Yu, B. Desiatov, B. Y. Kim, T. Hansson, M. Lončar, A. L. Gaeta. Chip-based self-referencing using integrated lithium niobate waveguides. Optica, 7, 702(2020).

    [127] R. Ikuta, M. Asano, R. Tani, T. Yamamoto, N. Imoto. Frequency comb generation in a quadratic nonlinear waveguide resonator. Opt. Express, 26, 15551(2018).

    [128] L. Zhou, X. Wang, L. Lu, J. Chen. Integrated optical delay lines: a review and perspective [Invited]. Chin. Opt. Lett., 16, 101301(2018).

    [129] D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics, 7, 597(2013).

    [130] X. Liu, S. Gao, C. Zhang, Y. Pan, R. Ma, X. Zhang, L. Liu, Z. Xie, S. Zhu, S. Yu, X. Cai. Ultra-broadband and low-loss edge coupler for highly efficient second harmonic generation in thin-film lithium niobate. Adv. Photonics Nexus, 1, 016001(2022).

    [131] Z. Ye, P. Zhao, K. Twayana, M. Karlsson, V. Torres-Company, P. A. Andrekson. Overcoming the quantum limit of optical amplification in monolithic waveguides. Sci. Adv., 7, eabi8150(2021).

    [132] M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, M. Lončar. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536(2017).

    [133] A. Boes, L. Chang, T. Nguyen, G. Ren, J. Bowers, A. Mitchell. Efficient second harmonic generation in lithium niobate on insulator waveguides and its pitfalls. J. Phys. Photonics, 3, 012008(2021).

    [134] E. Saitoh, Y. Kawaguchi, K. Saitoh, M. Koshiba. A design method of lithium niobate on insulator ridge waveguides without leakage loss. Opt. Express, 19, 15833(2011).

    [135] S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, A. W. Rodriguez. Inverse design in nanophotonics. Nat. Photonics, 12, 659(2018).

    Data from CrossRef

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    [1] Yan-Yan Qin, Xiao-Mei Xue, Lei Shi, Xiao-Yang Zhang, Tong Zhang.

    Lei Shi, Yuanjun Song, Jie Tang, Yanyan Qin, Xiaomei Xue, Huanli Zhou, Zexian Chen, Xuan Li, Guang Qian, Xiaoyang Zhang, Tong Zhang, "Review of advanced progress of χ2-based all-optical devices on thin-film lithium niobate," Chin.Opt.Lett. 21, 101901 (2023)
    Download Citation