• Chinese Journal of Lasers
  • Vol. 51, Issue 10, 1002317 (2024)
Shiwen Qi1、2, Dongdong Gu1、2、*, Han Zhang1、2, and Donghua Dai1、2
Author Affiliations
  • 1College of Materials Science and Technology, Nanjing University of Aeronautics&Astronautics, Nanjing 210016, Jiangsu, China
  • 2Jiangsu Provincial Engineering Research Center for Laser Additive Manufacturing of High-Performance Components, Nanjing 210016, Jiangsu, China
  • show less
    DOI: 10.3788/CJL231114 Cite this Article Set citation alerts
    Shiwen Qi, Dongdong Gu, Han Zhang, Donghua Dai. Performance and Structure Control of Rare‐Earth‐Element Modified High‐Strength Aluminum Alloy Processed by Laser Powder Bed Fusion[J]. Chinese Journal of Lasers, 2024, 51(10): 1002317 Copy Citation Text show less
    References

    [1] Wang H F, Tian X J, Cheng X et al. Effects of thermal deformation conditions on microstructures and deformation behaviors of laser additive manufactured TC18 titanium alloys[J]. Chinese Journal of Lasers, 45, 0302008(2018).

    [2] Wang Z H, Wang H M, Liu D. Microstructure and mechanical properties of AF1410 ultra-high strength steel using laser additive manufacture technique[J]. Chinese Journal of Lasers, 43, 0403001(2016).

    [3] Li H, Zhao W J, Li R D et al. Progress on additive manufacturing of maraging steel[J]. Chinese Journal of Lasers, 49, 1402102(2022).

    [4] Yin Q Y, Wei H L, Zhang C C et al. Effect prediction of stress and deformation for laser additive manufacturing of characteristic structure based on inherent strain method[J]. Chinese Journal of Lasers, 49, 1402207(2022).

    [5] Gu D D, Shi X Y, Poprawe R et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science, 372, eabg1487(2021).

    [6] Rao J H, Zhang Y, Zhang K et al. Multiple precipitation pathways in an Al-7Si-0.6Mg alloy fabricated by selective laser melting[J]. Scripta Materialia, 160, 66-69(2019).

    [7] Suryawanshi J, Prashanth K G, Scudino S et al. Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting[J]. Acta Materialia, 115, 285-294(2016).

    [8] Anwar A B, Pham Q C. Selective laser melting of AlSi10Mg: effects of scan direction, part placement and inert gas flow velocity on tensile strength[J]. Journal of Materials Processing Technology, 240, 388-396(2017).

    [9] Zhang H, Zhu H H, Qi T et al. Selective laser melting of high strength Al-Cu-Mg alloys: processing, microstructure and mechanical properties[J]. Materials Science and Engineering: A, 656, 47-54(2016).

    [10] Reschetnik W, Brüggemann J P, Aydinöz M E et al. Fatigue crack growth behavior and mechanical properties of additively processed EN AW-7075 aluminium alloy[J]. Procedia Structural Integrity, 2, 3040-3048(2016).

    [11] Uddin S Z, Murr L E, Terrazas C A et al. Processing and characterization of crack-free aluminum 6061 using high-temperature heating in laser powder bed fusion additive manufacturing[J]. Additive Manufacturing, 22, 405-415(2018).

    [12] Wang M B, Li R D, Yuan T C et al. Microstructures and mechanical property of AlMgScZrMn: a comparison between selective laser melting, spark plasma sintering and cast[J]. Materials Science and Engineering: A, 756, 354-364(2019).

    [13] Spierings A B, Dawson K, Kern K et al. SLM-processed Sc- and Zr- modified Al-Mg alloy: mechanical properties and microstructural effects of heat treatment[J]. Materials Science and Engineering: A, 701, 264-273(2017).

    [14] Schimbäck D, Mair P, Bärtl M et al. Alloy design strategy for microstructural-tailored scandium-modified aluminium alloys for additive manufacturing[J]. Scripta Materialia, 207, 114277(2022).

    [15] Bi J, Liu L, Wang C Y et al. Microstructure, tensile properties and heat-resistant properties of selective laser melted AlMgScZr alloy under long-term aging treatment[J]. Materials Science and Engineering: A, 833, 142527(2022).

    [16] Schmidtke K, Palm F, Hawkins A et al. Process and mechanical properties: applicability of a scandium modified Al-alloy for laser additive manufacturing[J]. Physics Procedia, 12, 369-374(2011).

    [17] Spierings A B, Dawson K, Heeling T et al. Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting[J]. Materials & Design, 115, 52-63(2017).

    [18] Yang K, Shi Y J, Palm F et al. Columnar to equiaxed transition in Al-Mg (-Sc)-Zr alloys produced by selective laser melting[J]. Scripta Materialia, 145, 113-117(2018).

    [19] Li R D, Wang M B, Yuan T C et al. Selective laser melting of a novel Sc and Zr modified Al-6.2Mg alloy: processing, microstructure, and properties[J]. Powder Technology, 319, 117-128(2017).

    [20] Guan K, Wang Z M, Gao M et al. Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel[J]. Materials & Design, 50, 581-586(2013).

    [21] Nadammal N, Mishurova T, Fritsch T et al. Critical role of scan strategies on the development of microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing[J]. Additive Manufacturing, 38, 101792(2021).

    [22] Dai D H, Gu D D. Influence of thermodynamics within molten pool on migration and distribution state of reinforcement during selective laser melting of AlN/AlSi10Mg composites[J]. International Journal of Machine Tools and Manufacture, 100, 14-24(2016).

    [23] Dai D H, Gu D D. Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder[J]. International Journal of Machine Tools and Manufacture, 88, 95-107(2015).

    [24] Qi S J, Xiong L, Chen M Y et al. TC4 titanium alloy track morphology and pore formation mechanism in laser powder bed fusion process[J]. Chinese Journal of Lasers, 50, 1202304(2023).

    [25] Yin J, Hao L, Yang L L et al. Investigation of interaction between vapor plume and spatter during selective laser melting additive manufacturing[J]. Chinese Journal of Lasers, 49, 1402202(2022).

    [26] DebRoy T, Wei H L, Zuback J S et al. Additive manufacturing of metallic components: process, structure and properties[J]. Progress in Materials Science, 92, 112-224(2018).

    Shiwen Qi, Dongdong Gu, Han Zhang, Donghua Dai. Performance and Structure Control of Rare‐Earth‐Element Modified High‐Strength Aluminum Alloy Processed by Laser Powder Bed Fusion[J]. Chinese Journal of Lasers, 2024, 51(10): 1002317
    Download Citation