• Acta Photonica Sinica
  • Vol. 51, Issue 2, 0210009 (2022)
Junying ZENG1, Yucong CHEN1, Xihua LIN1, Chuanbo QIN1,*..., Yinbo WANG1, Jingming ZHU1, Lianfang TIAN2, Yikui ZHAI1 and Junying GAN1|Show fewer author(s)
Author Affiliations
  • 1Faculty of Intelligent Manufacturing,Wuyi University,Jiangmen,Guangdong 529020,China
  • 2School of Automation Science and Engineering,South China University of Technology,Guangzhou 510640,China
  • show less
    DOI: 10.3788/gzxb20225102.0210009 Cite this Article
    Junying ZENG, Yucong CHEN, Xihua LIN, Chuanbo QIN, Yinbo WANG, Jingming ZHU, Lianfang TIAN, Yikui ZHAI, Junying GAN. An Ultra-lightweight Real-time Segmentation Network of Finger Vein Textures[J]. Acta Photonica Sinica, 2022, 51(2): 0210009 Copy Citation Text show less
    The overall structure of the SGUnetV3
    Fig. 1. The overall structure of the SGUnetV3
    SGUnetV1 basic block structure diagram
    Fig. 2. SGUnetV1 basic block structure diagram
    The basic module structure after joining the Cheap operation
    Fig. 3. The basic module structure after joining the Cheap operation
    The basic block structure of SGUnetV3 network
    Fig. 4. The basic block structure of SGUnetV3 network
    Three options for ECA module placement
    Fig. 5. Three options for ECA module placement
    The effect of finger vein segmentation
    Fig. 6. The effect of finger vein segmentation
    Segmentation visualization of each patch of finger vein
    Fig. 7. Segmentation visualization of each patch of finger vein
    The actual segmentation effect diagram of SGUnet and each lightweight network on the SDU-FV dataset
    Fig. 8. The actual segmentation effect diagram of SGUnet and each lightweight network on the SDU-FV dataset
    The actual segmentation effect diagram of SGUnet and each lightweight network on the MMCBNU_6000 dataset
    Fig. 9. The actual segmentation effect diagram of SGUnet and each lightweight network on the MMCBNU_6000 dataset
    Comparison of important indicators with classic lightweight networks
    Fig. 10. Comparison of important indicators with classic lightweight networks
    NetworkParamsMult-AddsDiceAUCAccuracySpecificityPrecision
    Unet13.39M1.928G0.444 60.843 491.16%96.47%53.79%
    MobileV2+Unet5.289M171.226M0.502 50.855 491.31%95.34%53.68%
    SGUnet516.014k39.494M0.503 00.898 291.89%95.95%57.27%
    Table 1. Improved network SGUnet and basic Unet,MobileV2+Unet performance comparison table
    NetworkDiceAUCAccuracySpecificityPrecision
    SGUnet0.503 00.898 291.89%95.95%57.27%
    SGUnet+SE0.496 10.892 691.95%96.32%58.27%
    SGUnet+CA-320.496 80.886 791.89%96.25%57.79%
    SGUnet+CA-160.500 80.891 791.93%96.18%57.87%
    SGUnet+CA-80.501 50.886 992.00%96.30%58.55%
    SGUnet+ECA-30.497 80.891 391.80%96.11%58.37%
    SGUnet+ECA-50.503 80.898 292.10%96.34%59.04%
    Table 2. Performance comparison table of ECA module,classic SE module and CA attention module added on the basis of SGUnet
    NetworkDiceAUCAccuracySpecificityPrecision
    a0.501 60.898 292.10%96.34%59.04%
    b0.501 20.896 492.03%96.18%58.54%
    c0.500 40.894 591.97%96.26%58.32%
    Table 3. Comparison of network performance of three different schemes a,b,and c
    NetworkParamsMult-AddsDiceAUCAccuracySpecificityPrecision
    Unet13.39M1.928G0.444 60.843 491.16%96.47%53.79%
    MobileV1+Unet3.932M481.35M0.498 90.855 491.31%95.34%53.68%
    MobileV2+Unet5.289M171.226M0.502 50.884 691.54%95.87%56.68%
    SGUnetV1516.054k39.504M0.503 80.898 292.10%96.34%59.04%
    SGUnetV2416.752k26.575M0.499 20.898 991.73%96.12%56.14%
    Table 4. Comparison of parameters between SGUnetV2 and other networks
    NetworkParamsMult-AddsDiceAUCAccuracySpecificityPrecision
    R2UNet48.92M----------0.902 991.87%98.21%62.18%
    DUNet26.73M----------0.913 391.99%97.26%64.20%
    Unet13.39M1.928G0.444 60.843 491.17%96.48%53.79%
    SGUnetV1516.054k39.504M0.503 80.898 292.10%96.34%59.04%
    SGUnetV2416.752k26.575M0.499 20.898 991.73%96.12%56.14%
    SGUnetV3145.25k10.453M0.497 30.899 291.60%95.81%55.34%
    Table 5. Experimental results of SGUnet series network and large-scale network on SDU-FV data set
    NetworkParamsMult-AddsDiceAUCAccuracySpecificityPrecision
    R2UNet48.92M----------0.905 892.94%97.22%54.68%
    DUNet26.73M----------0.912 593.30%97.89%58.82%
    Unet13.39M1.928G0.437 20.847 491.03%95.70%49.49%
    SGUnetV1516.054k39.504M0.538 40.934 494.11%96.79%60.44%
    SGUnetV2416.752k26.575M0.527 90.935 493.75%96.31%57.55%
    SGUnetV3145.25k10.453M0.520 20.933 393.68%96.36%57.23%
    Table 6. Experimental results of SGUnet series network and large-scale network on MMCBNU_6000 data set
    NetworkParamsFLopsMult-AddsDiceAUCAccuracySpecificityPrecision
    Unet13.39M1.95G1.928G0.444 60.843 491.17%96.48%53.79%
    Squeeze_Unet2.893M296.05M287.61M0.501 70.863 091.02%94.72%51.90%
    Mobile_Unet3.932M498.13M481.35M0.502 50.855 491.31%95.34%53.68%
    Ghost_Unet6.783M130.46M128.97M0.485 30.886 491.84%96.75%58.47%
    Shuffle_Unet516K68.27M57.97M0.511 60.885 991.48%95.28%54.49%
    SGUnetV1516.054k42.97M39.504M0.503 80.898 292.10%96.34%59.04%
    SGUnetV2416.752k29.26M26.575M0.499 20.898 991.73%96.12%56.14%
    SGUnetV3145.25k13.13M10.453M0.497 30.899 291.60%95.81%55.34%
    Table 7. Experimental data of SGUnet series network and other lightweight networks on SDU-FV dataset
    NetworkParamsFLopsMult-AddsDiceAUCAccuracySpecificityPrecision
    Unet13.39M1.95G1.928G0.474 10.883 492.42%95.80%49.24%
    Squeeze_Unet2.893M296.05M287.61M0.510 50.921 693.08%95.34%52.60%
    Mobile_Unet3.932M498.13M481.35M0.500 30.905 492.06%94.52%53.37%
    Ghost_Unet6.783M130.46M128.97M0.511 00.924 393.01%96.43%58.38%
    Shuffle_Unet516K68.27M57.97M0.479 20.906 691.80%94.15%46.33%
    SGUnetV1516.054k42.97M39.504M0.538 40.934 494.11%96.79%60.44%
    SGUnetV2416.752k29.26M26.575M0.527 90.935 493.75%96.31%57.55%
    SGUnetV3145.25k13.13M10.453M0.520 20.933 393.68%96.36%57.23%
    Table 8. Experimental data of SGUnet series network and other lightweight networks on MMCBNU_6000 dataset
    NetworkTime/s
    NANOTX2NXAGX
    Squeeze_Unet5.1460.6860.6630.388
    Mobile_Unet5.6990.5190.5050.288
    Ghost_Unet2.7190.6840.7220.358
    Shuffle_Unet3.2080.7660.6540.426
    SGUnetV12.7350.4550.3860.283
    SGUnetV22.7890.5230.4270.302
    SGUnetV32.8270.5690.4580.306
    Table 9. The running time of SGUnet series and other lightweight networks to process a single SDU-FV data set image on the NVIDIA embedded platform
    NetworkTime/s
    NANOTX2NXAGX
    Squeeze_Unet5.2410.6790.6990.357
    Mobile_Unet5.4350.5240.7370.284
    Ghost_Unet2.7910.6120.7340.346
    Shuffle_Unet3.2210.7660.6520.418
    SGUnetV12.7790.4570.4050.270
    SGUnetV22.8730.5250.4180.290
    SGUnetV32.9280.5700.4670.291
    Table 10. The running time of SGUnet series and other lightweight networks to process a single MMCBNU_6000 data set image on the NVIDIA embedded platform
    Junying ZENG, Yucong CHEN, Xihua LIN, Chuanbo QIN, Yinbo WANG, Jingming ZHU, Lianfang TIAN, Yikui ZHAI, Junying GAN. An Ultra-lightweight Real-time Segmentation Network of Finger Vein Textures[J]. Acta Photonica Sinica, 2022, 51(2): 0210009
    Download Citation