Fig. 1. The overall structure of the SGUnetV3
Fig. 2. SGUnetV1 basic block structure diagram
Fig. 3. The basic module structure after joining the Cheap operation
Fig. 4. The basic block structure of SGUnetV3 network
Fig. 5. Three options for ECA module placement
Fig. 6. The effect of finger vein segmentation
Fig. 7. Segmentation visualization of each patch of finger vein
Fig. 8. The actual segmentation effect diagram of SGUnet and each lightweight network on the SDU-FV dataset
Fig. 9. The actual segmentation effect diagram of SGUnet and each lightweight network on the MMCBNU_6000 dataset
Fig. 10. Comparison of important indicators with classic lightweight networks
Network | Params | Mult-Adds | Dice | AUC | Accuracy | Specificity | Precision |
---|
Unet | 13.39M | 1.928G | 0.444 6 | 0.843 4 | 91.16% | 96.47% | 53.79% | MobileV2+Unet | 5.289M | 171.226M | 0.502 5 | 0.855 4 | 91.31% | 95.34% | 53.68% | SGUnet | 516.014k | 39.494M | 0.503 0 | 0.898 2 | 91.89% | 95.95% | 57.27% |
|
Table 1. Improved network SGUnet and basic Unet,MobileV2+Unet performance comparison table
Network | Dice | AUC | Accuracy | Specificity | Precision |
---|
SGUnet | 0.503 0 | 0.898 2 | 91.89% | 95.95% | 57.27% | SGUnet+SE | 0.496 1 | 0.892 6 | 91.95% | 96.32% | 58.27% | SGUnet+CA-32 | 0.496 8 | 0.886 7 | 91.89% | 96.25% | 57.79% | SGUnet+CA-16 | 0.500 8 | 0.891 7 | 91.93% | 96.18% | 57.87% | SGUnet+CA-8 | 0.501 5 | 0.886 9 | 92.00% | 96.30% | 58.55% | SGUnet+ECA-3 | 0.497 8 | 0.891 3 | 91.80% | 96.11% | 58.37% | SGUnet+ECA-5 | 0.503 8 | 0.898 2 | 92.10% | 96.34% | 59.04% |
|
Table 2. Performance comparison table of ECA module,classic SE module and CA attention module added on the basis of SGUnet
Network | Dice | AUC | Accuracy | Specificity | Precision |
---|
a | 0.501 6 | 0.898 2 | 92.10% | 96.34% | 59.04% | b | 0.501 2 | 0.896 4 | 92.03% | 96.18% | 58.54% | c | 0.500 4 | 0.894 5 | 91.97% | 96.26% | 58.32% |
|
Table 3. Comparison of network performance of three different schemes a,b,and c
Network | Params | Mult-Adds | Dice | AUC | Accuracy | Specificity | Precision |
---|
Unet | 13.39M | 1.928G | 0.444 6 | 0.843 4 | 91.16% | 96.47% | 53.79% | MobileV1+Unet | 3.932M | 481.35M | 0.498 9 | 0.855 4 | 91.31% | 95.34% | 53.68% | MobileV2+Unet | 5.289M | 171.226M | 0.502 5 | 0.884 6 | 91.54% | 95.87% | 56.68% | SGUnetV1 | 516.054k | 39.504M | 0.503 8 | 0.898 2 | 92.10% | 96.34% | 59.04% | SGUnetV2 | 416.752k | 26.575M | 0.499 2 | 0.898 9 | 91.73% | 96.12% | 56.14% |
|
Table 4. Comparison of parameters between SGUnetV2 and other networks
Network | Params | Mult-Adds | Dice | AUC | Accuracy | Specificity | Precision |
---|
R2UNet | 48.92M | ----- | ----- | 0.902 9 | 91.87% | 98.21% | 62.18% | DUNet | 26.73M | ----- | ----- | 0.913 3 | 91.99% | 97.26% | 64.20% | Unet | 13.39M | 1.928G | 0.444 6 | 0.843 4 | 91.17% | 96.48% | 53.79% | SGUnetV1 | 516.054k | 39.504M | 0.503 8 | 0.898 2 | 92.10% | 96.34% | 59.04% | SGUnetV2 | 416.752k | 26.575M | 0.499 2 | 0.898 9 | 91.73% | 96.12% | 56.14% | SGUnetV3 | 145.25k | 10.453M | 0.497 3 | 0.899 2 | 91.60% | 95.81% | 55.34% |
|
Table 5. Experimental results of SGUnet series network and large-scale network on SDU-FV data set
Network | Params | Mult-Adds | Dice | AUC | Accuracy | Specificity | Precision |
---|
R2UNet | 48.92M | ----- | ----- | 0.905 8 | 92.94% | 97.22% | 54.68% | DUNet | 26.73M | ----- | ----- | 0.912 5 | 93.30% | 97.89% | 58.82% | Unet | 13.39M | 1.928G | 0.437 2 | 0.847 4 | 91.03% | 95.70% | 49.49% | SGUnetV1 | 516.054k | 39.504M | 0.538 4 | 0.934 4 | 94.11% | 96.79% | 60.44% | SGUnetV2 | 416.752k | 26.575M | 0.527 9 | 0.935 4 | 93.75% | 96.31% | 57.55% | SGUnetV3 | 145.25k | 10.453M | 0.520 2 | 0.933 3 | 93.68% | 96.36% | 57.23% |
|
Table 6. Experimental results of SGUnet series network and large-scale network on MMCBNU_6000 data set
Network | Params | FLops | Mult-Adds | Dice | AUC | Accuracy | Specificity | Precision |
---|
Unet | 13.39M | 1.95G | 1.928G | 0.444 6 | 0.843 4 | 91.17% | 96.48% | 53.79% | Squeeze_Unet | 2.893M | 296.05M | 287.61M | 0.501 7 | 0.863 0 | 91.02% | 94.72% | 51.90% | Mobile_Unet | 3.932M | 498.13M | 481.35M | 0.502 5 | 0.855 4 | 91.31% | 95.34% | 53.68% | Ghost_Unet | 6.783M | 130.46M | 128.97M | 0.485 3 | 0.886 4 | 91.84% | 96.75% | 58.47% | Shuffle_Unet | 516K | 68.27M | 57.97M | 0.511 6 | 0.885 9 | 91.48% | 95.28% | 54.49% | SGUnetV1 | 516.054k | 42.97M | 39.504M | 0.503 8 | 0.898 2 | 92.10% | 96.34% | 59.04% | SGUnetV2 | 416.752k | 29.26M | 26.575M | 0.499 2 | 0.898 9 | 91.73% | 96.12% | 56.14% | SGUnetV3 | 145.25k | 13.13M | 10.453M | 0.497 3 | 0.899 2 | 91.60% | 95.81% | 55.34% |
|
Table 7. Experimental data of SGUnet series network and other lightweight networks on SDU-FV dataset
Network | Params | FLops | Mult-Adds | Dice | AUC | Accuracy | Specificity | Precision |
---|
Unet | 13.39M | 1.95G | 1.928G | 0.474 1 | 0.883 4 | 92.42% | 95.80% | 49.24% | Squeeze_Unet | 2.893M | 296.05M | 287.61M | 0.510 5 | 0.921 6 | 93.08% | 95.34% | 52.60% | Mobile_Unet | 3.932M | 498.13M | 481.35M | 0.500 3 | 0.905 4 | 92.06% | 94.52% | 53.37% | Ghost_Unet | 6.783M | 130.46M | 128.97M | 0.511 0 | 0.924 3 | 93.01% | 96.43% | 58.38% | Shuffle_Unet | 516K | 68.27M | 57.97M | 0.479 2 | 0.906 6 | 91.80% | 94.15% | 46.33% | SGUnetV1 | 516.054k | 42.97M | 39.504M | 0.538 4 | 0.934 4 | 94.11% | 96.79% | 60.44% | SGUnetV2 | 416.752k | 29.26M | 26.575M | 0.527 9 | 0.935 4 | 93.75% | 96.31% | 57.55% | SGUnetV3 | 145.25k | 13.13M | 10.453M | 0.520 2 | 0.933 3 | 93.68% | 96.36% | 57.23% |
|
Table 8. Experimental data of SGUnet series network and other lightweight networks on MMCBNU_6000 dataset
Network | Time/s |
---|
NANO | TX2 | NX | AGX |
---|
Squeeze_Unet | 5.146 | 0.686 | 0.663 | 0.388 | Mobile_Unet | 5.699 | 0.519 | 0.505 | 0.288 | Ghost_Unet | 2.719 | 0.684 | 0.722 | 0.358 | Shuffle_Unet | 3.208 | 0.766 | 0.654 | 0.426 | SGUnetV1 | 2.735 | 0.455 | 0.386 | 0.283 | SGUnetV2 | 2.789 | 0.523 | 0.427 | 0.302 | SGUnetV3 | 2.827 | 0.569 | 0.458 | 0.306 |
|
Table 9. The running time of SGUnet series and other lightweight networks to process a single SDU-FV data set image on the NVIDIA embedded platform
Network | Time/s |
---|
NANO | TX2 | NX | AGX |
---|
Squeeze_Unet | 5.241 | 0.679 | 0.699 | 0.357 | Mobile_Unet | 5.435 | 0.524 | 0.737 | 0.284 | Ghost_Unet | 2.791 | 0.612 | 0.734 | 0.346 | Shuffle_Unet | 3.221 | 0.766 | 0.652 | 0.418 | SGUnetV1 | 2.779 | 0.457 | 0.405 | 0.270 | SGUnetV2 | 2.873 | 0.525 | 0.418 | 0.290 | SGUnetV3 | 2.928 | 0.570 | 0.467 | 0.291 |
|
Table 10. The running time of SGUnet series and other lightweight networks to process a single MMCBNU_6000 data set image on the NVIDIA embedded platform