• Acta Photonica Sinica
  • Vol. 49, Issue 5, 512001 (2020)
WU Na-na1, ZHONG Ying2, and LIU Hai-tao11、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/gzxb20204905.0512001 Cite this Article
    WU Na-na, ZHONG Ying, LIU Hai-tao1. Superresolving Measurement of the Metallic Nanogap beyond the Aperture Size of the SNOM Probe[J]. Acta Photonica Sinica, 2020, 49(5): 512001 Copy Citation Text show less
    References

    [1] RASMUSSEN A, DECKERT V. New dimension in nano-imaging: breaking through the diffraction limit with scanning near-field optical microscopy[J]. Analytical and Bioanalytical Chemistry, 2005, 381(1): 165-172.

    [2] BAZYLEWSKI P, EZUGWU S, FANCHINI G, et al. A review of three-dimensional scanning near-field optical microscopy (3D-SNOM) and its applications in nanoscale light management[J]. Applied Science-Basel, 2017, 7(10): 973.

    [3] VEERMAN J A, OTTER A M, KUIPERS L, et al. High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling[J]. Applied Physics Letters, 1998, 72(24): 3115-3117.

    [4] WEINE J. The physics of light transmission through subwavelength apertures and aperture arrays[J]. Reports on Progress in Physics, 2009, 72(6): 064401.

    [5] DUNN R C. Near-field scanning optical microscopy[J]. Chemical Reviews, 1999, 71(1): 2891-2928.

    [7] HERMANN R J, GORDON M J. Nanoscale optical microscopy and spectroscopy using near-field probes[J]. Annual Review of Chemical and Biomolecular Engineering, 2018, 9 (1): 365-387.

    [8] PAESLER M A, MOYER P J. Near-field optics: theory, instrumentation, and applications[J]. Physics Today, 1997, 50(11): 67.

    [9] WANG Xue-en, FAN Zhao-zhong, TANG Tian-tong. Simulation of topographic images and artifacts in illumination-mode scanning-near-field optical microscopy[J]. Journal of the Optical Society of America A, 2005, 22(12): 2730-2736.

    [10] CARMINATI R, NIETO-VESPERINAS M, GREFFET J J. Reciprocity of evanescent electromagnetic waves[J]. Journal of the Optical Society of America A. 1998, 15(3): 706- 712.

    [11] GREFFET J J, CARMINATI R. Image formation in near-field optics[J]. Progress in Surface Science, 1997, 56(3): 133-237.

    [12] MENDEZ E R, GREFFET J J, CARMINATI R. On the equivalence between the illumination and collection modes of the scanning near-field optical microscope[J]. Optics Communications, 1997, 142(1-3): 7-13.

    [13] ALVAREZ L, SAUCEDA A, XIAO Mu-fei. Optical transmission of a subwavelength aperture: size and fiber parameter dependence of near-field resolution[J]. Optics Communications, 2003, 219(1-6): 9-14.

    [16] LIN Y H, HANDEL B, HUANG H J, et al. Near-field optical imaging of a porous Au film: influences of topographic artifacts and surface plasmons[J]. Plasmonics, 2013, 8(2): 377-383.

    [17] SIMPSON S H, HANNA S. Scanning near-field optical microscopy of metallic features[J]. Optics Communications, 2005, 256(4-6): 476-488.

    [18] NOVOTNY L, HULST V N. Antennas for light[J]. Nature Photonics, 2011, 5(2): 83-90.

    [20] LIAW J W, HUANG C H, CHEN B R, et al. Subwavelength Fabry-Perot resonator: a pair of quantum dots incorporated with gold nanorod[J]. Nanoscale Research Letters, 2012, 7(1): 1-7.

    [21] LU Guo-wei, ZHANG Tian-yue, LI Wen-qiang, et al. Single-molecule spontaneous emission in the vicinity of an individual gold nanorod[J]. Journal of Physical Chemistry C, 2011, 115(32): 15822-15828.

    [22] MUSKENS O L, GIANNINI V, SANCHEZ-GIL J A, et al. Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas[J]. Nano Letters, 2007, 7(9): 2871-2875.

    [23] JIA Hong-wei, YANG Fan, LIU Hai-tao, et al. Understanding localized surface plasmon resonance with propagative surface plasmon polaritons in optical nanogap antennas [J]. Photonics Research, 2016, 4(6): 293-305.

    [24] MUHLSCHLEGEL P, EISLER H J, MARTIN O J F, et al. Resonant optical antennas[J]. Science, 2005, 308(5728): 1607-1609.

    [25] JIA Hong-wei, LIU Hai-tao, ZHONG Ying. Role of surface plasmon polaritons and other waves in the radiation of resonant optical dipole antennas[J]. Scientific Reports, 2015, 5: 8456.

    [26] NOVOTNY L, HECHT B. Principles of nano-optics[M]. Cambridge University Press, 2007.

    [27] PALIK E D. Handbook of optical constants of solids Part II [M]. Academic Press, 1985.

    [28] WANG Hua-yu, LIU Hai-tao,ZHONG Ying, et al. Tunable fluorescence emission of molecules with controllable positions within the metallic nanogap between gold nanorods and a gold film[J]. Journal of Materials Chemistry C, 2019, 7(43): 13526-13535.

    [29] LIU Chuan, LIU Hai-tao, ZHONG Ying. Impact of surface plasmon polaritons and other waves on the radiation of a dipole emitter close to a metallic nanowire antenna[J ]. Optics Express, 2014, 22(21): 25539-25549.

    [30] LIU Hai-tao. DIF CODE for modeling light diffraction in nanostructures[M]. Tianjin: Nankai University, 2010.

    [31] PURCELL E M, TORREY H C, POUND R V. Resonance absorption by nuclear magnetic moments in a solid[J]. Physical Review, 1946, 69(1-2): 37-38.

    [32] MOHARAM M G, GRANN E B, POMMET D A, et al. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[J]. Journal of the Optical Society of America A, 1995, 12(5): 1068-1076.

    [33] HUGONIN J P, LALANNE P. Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization[J]. Journal of the Optical Society of America A, 2005, 22(9): 1844-1849.

    [34] ASPNES D E, STUDNA A A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV[J].Physical Review B, 1983, 27(2): 985-1009.

    WU Na-na, ZHONG Ying, LIU Hai-tao1. Superresolving Measurement of the Metallic Nanogap beyond the Aperture Size of the SNOM Probe[J]. Acta Photonica Sinica, 2020, 49(5): 512001
    Download Citation