• Photonics Research
  • Vol. 12, Issue 9, 1907 (2024)
Meiting Xie1, Jiangtao Xu1, Jiajun Wang1, Huihui Zhao1..., Yeshuai Liu1, Jianxiang Wen1, Fufei Pang1, Jianfeng Sun2 and Xianglong Zeng1,*|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
  • 2Shanghai Satellite Network Research Institute Co., Ltd., Shanghai 201204, China
  • show less
    DOI: 10.1364/PRJ.524697 Cite this Article Set citation alerts
    Meiting Xie, Jiangtao Xu, Jiajun Wang, Huihui Zhao, Yeshuai Liu, Jianxiang Wen, Fufei Pang, Jianfeng Sun, Xianglong Zeng, "Generating broadband cylindrical vector modes based on polarization-dependent acoustically induced fiber gratings using the dispersion turning point," Photonics Res. 12, 1907 (2024) Copy Citation Text show less
    References

    [1] D. J. Richardson, J. M. Fini, L. E. Nelson. Space-division multiplexing in optical fibres. Nat. Photonics, 7, 354-362(2013).

    [2] H. R. Stuart. Dispersive multiplexing in multimode optical fiber. Science, 289, 281-283(2000).

    [3] K. Toyoda, K. Miyamoto, N. Aoki. Using optical vortex to control the chirality of twisted metal nanostructures. Nano Lett., 12, 3645-3649(2012).

    [4] L. C. Higueras, E. P. Alcusa-Saez, A. Diez. All-fiber laser with intracavity acousto-optic dynamic mode converter for efficient generation of radially polarized cylindrical vector beams. IEEE Photonics J., 9, 1500507(2016).

    [5] K. Dholakia, T. Čižmár. Shaping the future of manipulation. Nat. Photonics, 5, 335-342(2011).

    [6] Z. Yong, C. Zhan, J. Lee. Multiple parameter vector bending and high-temperature sensors based on asymmetric multimode fiber Bragg gratings inscribed by an infrared femtosecond laser. Opt. Lett., 31, 1794-1796(2006).

    [7] C. Min, Z. Shen, J. Shen. Focused plasmonic trapping of metallic particles. Nat. Commun., 4, 2891(2013).

    [8] B. Piccirillo, V. D. Ambrosio, S. Slussarenko. Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate. Appl. Phys. Lett., 97, 241104(2010).

    [9] M. Beijersbergen, R. Coerwinkel, M. Kristensen. Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun., 112, 321-327(1994).

    [10] A. S. Ostrovsky, C. R. Parrao, V. Arrizón. Generation of the perfect optical vortex using a liquid-crystal spatial light modulator. Opt. Lett., 38, 534-536(2013).

    [11] D. Lin, K. Xia, J. Li. Efficient, high-power, and radially polarized fiber laser. Opt. Lett., 35, 2290-2292(2010).

    [12] T. Wang, F. Wang, F. Shi. Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler. J. Lightwave Technol., 35, 2161-2166(2017).

    [13] J. Lu, L. Meng, F. Shi. Dynamic mode-switchable optical vortex beams using acousto-optic mode converter. Opt. Lett., 43, 5841-5844(2018).

    [14] L. Teng, J. Lu, Y. He. Vortex soliton oscillation in a mode-locked laser based on broadband long-period fiber grating. Opt. Lett., 46, 2710-2713(2021).

    [15] C. Song, H. S. Park, K. Y. Song. Acousto-optic generation of orbital angular momentum states of light in a tapered optical fiber. Curr. Appl. Phys., 18, 1441-1446(2018).

    [16] W. Zhang, X. Li, L. Zhang. Generation of cylindrical vector beams and optical vortex in a solid-core ring fiber based on an acoustically induced fiber grating. IEEE J. Sel. Top. Quantum Electron., 26, 4500205(2020).

    [17] D. R. Song, L. Yan, T. He. Integrated orbital angular momentum mode generator with wide spectral tunability. J. Opt. Soc. Am. B, 38, F186-F190(2021).

    [18] Y. Li, L. Huang, H. Han. Acousto-optic tunable ultrafast laser with vector-mode-coupling-induced polarization conversion. Photonics Res., 7, 798-805(2019).

    [19] J. Xu, J. Lu, Z. Liu. Revealing the buildup of dynamic mode-switchable frequency-shifted feedback laser based on photon–phonon interaction. Opt. Laser Technol., 169, 110033(2024).

    [20] M. Zhou, Z. Zhang, B. Liu. Wave-band-tunable optical fiber broadband orbital angular momentum mode converter based on dispersion turning point tuning technique. Opt. Lett., 47, 5672-5675(2022).

    [21] C. Zhu, Q. Piao, L. Wang. Ultra-wideband OAM mode generator based on a helical grating written in a graded-index few-mode fiber. J. Lightwave Technol., 41, 1533-1538(2022).

    [22] K. Ren, M. Cheng, L. Ren. Ultra-broadband conversion of OAM mode near the dispersion turning point in helical fiber gratings. OSA Contin., 3, 77-87(2020).

    [23] M. Zhou, Z. Zhang, L. Shao. Broadband tunable orbital angular momentum mode converter based on a conventional single-mode all-fiber configuration. Opt. Express, 29, 15595-15603(2021).

    [24] M. Yavorsky, D. Vikulin, C. Alexeyev. Photon–phonon spin–orbit interaction in optical fibers. Optica, 8, 638-641(2021).

    [25] B. Sokolenko, N. Shostka, O. Karakchieva. Experimental demonstration of acoustically induced polarization-dependent fiber optical vortex inversion. Opt. Lett., 48, 4400-4403(2023).

    [26] R. Tao, H. Li, Y. Zhang. All-fiber mode-locked laser emitting broadband-spectrum cylindrical vector mode. Opt. Laser Technol., 123, 105945(2020).

    [27] K. J. Park, K. Y. Song, Y. K. Kim. Broadband mode division multiplexer using all-fiber mode selective couplers. Opt. Express, 24, 3543-3549(2016).

    [28] S. Ramachandran, S. Ghalmi, J. Nicholson. Anomalous dispersion in a solid, silica-based fiber. Opt. Lett., 31, 2532-2534(2006).

    [29] Y. Guo, Y. G. Liu, Z. Wang. More than 110-nm broadband mode converter based on dual-resonance coupling mechanism in long period fiber gratings. Opt. Laser Technol., 118, 8-12(2019).

    [30] S. Ramachandran, Z. Wang, M. Yan. Bandwidth control of long-period grating-based mode converters in few-mode fibers. Opt. Lett., 27, 698-700(2002).

    [31] R. Maruyama, N. Kuwaki, S. Matsuo. Relationship between mode coupling and fiber characteristics in few-mode fibers analyzed using impulse response measurements technique. J. Lightwave Technol., 35, 650-657(2017).

    [32] P. Dashti, Q. Li, C. H. Lin. Coherent acousto-optic mode coupling in dispersion-compensating fiber by two acoustic gratings with orthogonal vibration directions. Opt. Lett., 28, 1403-1405(2003).

    [33] J. Kim, J. Koo, J. H. Lee. All-fiber acousto-optic modulator based on a cladding-etched optical fiber for active mode-locking. Photonics Res., 5, 391-395(2017).

    [34] X. Han, Z. Wang, F. Gao. Robust and low cost in-fiber acousto-optic Mach–Zehnder interferometer and its application in a dual-wavelength laser. Appl. Opt., 61, 22-27(2022).

    [35] H. Zhang, B. Mao, Y. Han. Generation of orbital angular momentum mode using a single cylindrical vector mode based on mode selective coupler. Opt. Fiber Technol., 52, 101934(2019).

    [36] Y. Jiang, G. Ren, Y. Shen. Two-dimensional tunable orbital angular momentum generation using a vortex fiber. Opt. Lett., 42, 5014-5017(2017).

    [37] K. Wei, W. Zhang, L. Huang. Generation of cylindrical vector beams and optical vortex by two acoustically induced fiber gratings with orthogonal vibration directions. Opt. Express, 25, 2733-2741(2017).

    [38] L. Wang, J. Xu, J. Lu. 3 W average-power high-order mode pulse in dissipative soliton resonance mode-locked fiber laser. Nanophotonics, 10, 3527-3539(2021).

    [39] M. Hou, M. Xu, J. Xu. Deep learning–based vortex decomposition and switching based on fiber vector eigenmodes. Nanophotonics, 12, 3165-3177(2023).

    [40] M. Xu, M. Hou, X. Luo. Multi-order hybrid vector mode decomposition in few-mode fibers with DL-based SPGD algorithm. Opt. Laser Technol., 167, 109795(2023).

    [41] B. Rahmani, D. Loterie, G. Konstantinou. Multimode optical fiber transmission with a deep learning network. Light Sci. Appl., 7, 69(2018).

    [42] J. Feng, J. Zhou, J. Xu. Generating femtosecond vortex beams based on broadband LPFG in figure-9 mode-locked fiber laser. IEEE Photonics Technol. Lett., 34, 625-628(2022).

    [43] J. Zhou, W. Pan, X. Fu. Environmentally-stable 50-fs pulse generation directly from an Er:fiber oscillator. Opt. Fiber Technol., 52, 101963(2019).

    [44] J. R. Marciante, J. D. Zuegel. High-gain, polarization-preserving, Yb-doped fiber amplifier for low-duty-cycle pulse amplification. Appl. Opt., 45, 6798-6804(2006).

    [45] H. Wu, J. Xu, L. Huang. High-power fiber laser with real-time mode switchability. Chin. Opt. Lett., 20, 021402(2022).

    [46] Y. Wu, J. Wen, M. Zhang. Low-noise-figure and high-purity 10 vortex modes amplifier based on configurable pump modes. Opt. Express, 30, 8248-8256(2022).

    Meiting Xie, Jiangtao Xu, Jiajun Wang, Huihui Zhao, Yeshuai Liu, Jianxiang Wen, Fufei Pang, Jianfeng Sun, Xianglong Zeng, "Generating broadband cylindrical vector modes based on polarization-dependent acoustically induced fiber gratings using the dispersion turning point," Photonics Res. 12, 1907 (2024)
    Download Citation