• Chinese Journal of Lasers
  • Vol. 49, Issue 7, 0701003 (2022)
Gang Jin1、*, Yongjie Cheng1, Chengzu Huang1, Xingxun Liu1, Wanquan Qi1, and Jun He2、3
Author Affiliations
  • 1Beijing Institute of Radio Metrology and Measurement, Beijing 100039, China
  • 2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, Shanxi 030006, China
  • 3Collaborative Innovation Center of Extreme Optics of the Ministry of Education and Shanxi Province, Shanxi University, Taiyuan, Shanxi 030006, China
  • show less
    DOI: 10.3788/CJL202249.0701003 Cite this Article Set citation alerts
    Gang Jin, Yongjie Cheng, Chengzu Huang, Xingxun Liu, Wanquan Qi, Jun He. Generation of Laser System Using for Rydberg Atom Excitation[J]. Chinese Journal of Lasers, 2022, 49(7): 0701003 Copy Citation Text show less
    References

    [1] Kanda M. Standard antennas for electromagnetic interference measurements and methods to calibrate them[J]. IEEE Transactions on Electromagnetic Compatibility, 36, 261-273(1994).

    [2] Song Z F, Feng Z G, Liu X M et al. Quantum-based determination of antenna finite range gain by using Rydberg atoms[J]. IEEE Antennas and Wireless Propagation Letters, 16, 1589-1592(2017).

    [3] Hall J L. Nobel Lecture: defining and measuring optical frequencies[J]. Reviews of Modern Physics, 78, 1279-1295(2006).

    [4] Savukov I M, Seltzer S J, Romalis M V et al. Tunable atomic magnetometer for detection of radio-frequency magnetic fields[J]. Physical Review Letters, 95, 063004(2005).

    [5] Balabas M V, Karaulanov T, Ledbetter M P et al. Polarized alkali-metal vapor with minute-long transverse spin-relaxation time[J]. Physical Review Letters, 105, 070801(2010).

    [6] Wasilewski W, Jensen K, Krauter H et al. Quantum noise limited and entanglement-assisted magnetometry[J]. Physical Review Letters, 104, 133601(2010).

    [7] Koschorreck M, Napolitano M, Dubost B et al. Sub-projection-noise sensitivity in broadband atomic magnetometry[J]. Physical Review Letters, 104, 093602(2010).

    [8] Hao L P, Xue Y M, Fan J B et al. Precise measurement of a weak radio frequency electric field using a resonant atomic probe[J]. Chinese Physics B, 29, 033201(2020).

    [9] Mack M, Karlewski F, Hattermann H et al. Measurement of absolute transition frequencies of 87Rb to nS and nD Rydberg states by means of electromagnetically induced transparency[J]. Physical Review A, 83, 052515(2011).

    [10] Beterov I I, Ryabtsev I I, Tretyakov D B et al. Quasiclassical calculations of blackbody-radiation-induced depopulation rates and effective lifetimes of Rydberg nS, nP, and nD alkali-metal atoms with n≤80[J]. Physical Review A, 80, 059902(2009).

    [11] Sedlacek J A, Schwettmann A, Kübler H et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 8, 819-824(2012).

    [12] Kumar S, Fan H Q, Kübler H et al. Atom-based sensing of weak radio frequency electric fields using homodyne readout[J]. Scientific Reports, 7, 42981(2017).

    [13] Jing M Y, Hu Y, Ma J et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 16, 911-915(2020).

    [14] Kumar S, Fan H, Kübler H et al. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells[J]. Optics Express, 25, 8625-8637(2017).

    [15] Holloway C L, Gordon J A, Schwarzkopf A et al. Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms[J]. Applied Physics Letters, 104, 244102(2014).

    [16] Simons M T, Gordon J A, Holloway C L et al. Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms[J]. Applied Physics Letters, 108, 174101(2016).

    [17] Anderson D A, Paradis E, Raithel G et al. High-resolution antenna near-field imaging and sub-THz measurements with a small atomic vapor-cell sensing element[C], 1-3(2018).

    [18] Anderson D A, Miller S A, Raithel G et al. Optical measurements of strong microwave fields with Rydberg atoms in a vapor cell[J]. Physical Review Applied, 5, 034003(2016).

    [19] Anderson D A, Schwarzkopf A, Miller S A et al. Two-photon microwave transitions and strong-field effects in a room-temperature Rydberg-atom gas[J]. Physical Review A, 90, 043419(2014).

    [20] Wang J M, Bai J D, Wang J Y et al. Realization of a watt-level 319-nm single-frequency CW ultraviolet laser and its application in single-photon Rydberg excitation of cesium atoms[J]. Chinese Optics, 12, 701-718(2019).

    [21] Hao L P, Xue Y M, Fan J B et al. Precise measurement of a weak radio frequency electric field using a resonant atomic probe[J]. Chinese Physics B, 29, 033201(2020).

    [22] Fan J B, He Y H, Jiao Y C et al. Nonlinear spectroscopy of three-photon excitation of cesium Rydberg atoms in vapor cell[J]. Chinese Physics B, 30, 034207(2021).

    [23] Avramescu A, Lermer T, Müller J et al. True green laser diodes at 524 nm with 50 mW continuous wave output power on c-plane GaN[J]. Applied Physics Express, 3, 061003(2010).

    [24] Chen Y H, Lin W C, Shy J T et al. Iodine-stabilized single-frequency green InGaN diode laser[J]. Optics Letters, 43, 126-129(2017).

    [25] Cheng Y J, Jin G, Liu X X et al. Realization of laser system for precision measurement of microwave electric field using Rydberg atoms[J]. Journal of Astronautic Metrology and Measurement, 41, 48-52(2021).

    [26] Thompson D J, Scholten R E. Narrow linewidth tunable external cavity diode laser using wide bandwidth filter[J]. Review of Scientific Instruments, 83, 023107(2012).

    [27] Ruan J, Liu J, Ma J et al. Robust external cavity diode laser system with high frequency stability for Cs atomic clock[J]. Chinese Optics Letters, 8, 300-302(2010).

    [28] Jiang Z J, Zhou Q, Tao Z M et al. Diode laser using narrow bandwidth interference filter at 852 nm and its application in Faraday anomalous dispersion optical filter[J]. Chinese Physics B, 25, 083201(2016).

    [29] Zhang K, Bai J D, He J et al. Influence of laser linewidth on the conversion efficiency of single-pass frequency doubling with a PPMgO∶LN crystal[J]. Acta Physica Sinica, 65, 074207(2016).

    [30] Qian J P, Zhang L, Jiang H W et al. 2 W single-frequency, low-noise 509 nm laser via single-pass frequency doubling of an ECDL-seeded Yb fiber amplifier[J]. Applied Optics, 57, 8733-8737(2018).

    [31] Su M Q, You Y, Quan Z et al. 610-W continuous-wave single-mode green laser output based on highly efficient single-pass frequency doubling[J]. Chinese Journal of Lasers, 48, 1315002(2021).

    [32] Li G, Li S K, Wang X C et al. High efficient generation of over 1 watt 509 nm laser beam by a ring cavity frequency doubler with periodically poled KTiOPO4[J]. Applied Optics, 56, 55-60(2016).

    [33] Peng X L, Yang C S, Deng H Q et al. Research progress of blue-green single-frequency laser[J]. Laser & Optoelectronics Progress, 57, 071606(2020).

    [34] Wei L J, Cao J, Zhang Q M et al. Frequency doubling of fiber laser based on narrow linewidth grating[J]. Laser & Optoelectronics Progress, 58, 1914010(2021).

    [35] Liu H F, Wang J, Yang B D et al. Improvement of signal-to-noise ratio of electromagnetically-induced transparency spectra in the ladder-type cesium 6S1/2-6P1/2-8S1/2 atomic system[J]. Acta Optica Sinica, 33, 1030003(2013).

    Gang Jin, Yongjie Cheng, Chengzu Huang, Xingxun Liu, Wanquan Qi, Jun He. Generation of Laser System Using for Rydberg Atom Excitation[J]. Chinese Journal of Lasers, 2022, 49(7): 0701003
    Download Citation