• Photonics Research
  • Vol. 5, Issue 4, 324 (2017)
Yuanhua Li1、2, Tong Xiang1、2, Yiyou Nie3, Minghuang Sang3, and Xianfeng Chen1、2、*
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2Key Laboratory for Laser Plasma (Ministry of Education), Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
  • 3Department of Physics, Jiangxi Normal University, Nanchang 330022, China
  • show less
    DOI: 10.1364/PRJ.5.000324 Cite this Article Set citation alerts
    Yuanhua Li, Tong Xiang, Yiyou Nie, Minghuang Sang, Xianfeng Chen. Nonlinear interaction between broadband single-photon-level coherent states[J]. Photonics Research, 2017, 5(4): 324 Copy Citation Text show less
    References

    [1] N. Gisin, S. Pironio, N. Sangouard. Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. Phys. Rev. Lett., 105, 070501(2010).

    [2] Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. F. Ma, T. Y. Chen, Q. Zhang, J. W. Pan. Measurement-device-independent quantum key distribution over 200  km. Phys. Rev. Lett., 113, 190501(2014).

    [3] M. Curty, F. H. Xu, W. Cui, C. C. W. Lim, K. Tamaki, H. K. Lo. Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun., 5, 3732(2014).

    [4] Q. C. Sun, Y. L. Mao, S. J. Chen, W. Zhang, Y. F. Jiang, Y. B. Zhang, W. J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T. Y. Chen, L. X. You, X. F. Chen, Z. Wang, J. Y. Fan, Q. Zhang, J. W. Pan. Quantum teleportation with independent sources and prior entanglement distribution over a network. Nat. Photonics, 10, 671-675(2016).

    [5] N. Sangouard, B. Sanguinetti, N. Curtz, N. Gisin, R. Thew, H. Zbinden. Faithful entanglement swapping based on sum-frequency generation. Phys. Rev. Lett., 106, 120403(2011).

    [6] G. Z. Li, Y. P. Chen, H. W. Jiang, X. F. Chen. Enhanced Kerr electro-optic nonlinearity and its application in controlling second-harmonic generation. Photon. Res., 3, 168-172(2015).

    [7] N. An, Y. L. Zheng, H. J. Ren, X. H. Zhao, X. W. Deng, X. F. Chen. Normal, degenerated, and anomalous-dispersion-like Cerenkov sum-frequency generation in one nonlinear medium. Photon. Res., 3, 106-109(2015).

    [8] X. L. Feng, Z. H. Wu, X. Y. Wang, S. L. He, S. M. Gao. All-optical two-channel polarization-multiplexing format conversion from QPSK to BPSK signals in a silicon waveguide. Photon. Res., 4, 245-248(2016).

    [9] J. F. Xia, S. Serna, W. W. Zhang, L. Vivien, É. Cassan. Hybrid silicon slotted photonic crystal waveguides: how does third order nonlinear performance scale with slow light?. Photon. Res., 4, 257-261(2016).

    [10] T. Guerreiro, E. Pomarico, B. Sanguinetti, N. Sangouard, J. S. Pelc, C. Langrock, M. M. Fejer, H. Zbinden, R. T. Thew, N. Gisin. Interaction of independent single photons based on integrated nonlinear optics. Nat. Commun., 4, 2324(2013).

    [11] T. Guerreiro, A. Martin, B. Sanguinetti, J. S. Pelc, C. Langrock, M. M. Fejer, N. Gisin, H. Zbinden, N. Sangouard, R. T. Thew. Nonlinear interaction between single photons. Phys. Rev. Lett., 113, 173601(2014).

    [12] T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, V. Vuletić. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature, 488, 57-60(2012).

    [13] J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, C. S. Adams. Cooperative atom-light interaction in a blockaded Rydberg ensemble. Phys. Rev. Lett., 105, 193603(2010).

    [14] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, H. J. Kimble. Photon blockade in an optical cavity with one trapped atom. Nature, 436, 87-90(2005).

    [15] B. Dayan, A. Pe’er, A. A. Friesem, Y. Silberberg. Nonlinear interactions with an ultrahigh flux of broadband entangled photons. Phys. Rev. Lett., 94, 043602(2005).

    [16] R. T. Thew, H. Zbinden, N. Gisin. Tunable upconversion photon detector. Appl. Phys. Lett., 93, 071104(2008).

    [17] L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, T. Jennewein. Three-photon energy-time entanglement. Nat. Phys., 9, 19-22(2013).

    [18] N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, K. Edamatsu. Observation of optical-fibre Kerr nonlinearity at the single-photon level. Nat. Photonics, 3, 95-98(2009).

    [19] J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, K. J. Resch. Spectral compression of single photons. Nat. Photonics, 7, 363-366(2013).

    [20] K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, M. Fujimura. Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate. Opt. Lett., 27, 179-181(2002).

    [21] S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, H. Nakajima. Quasi-phase-matched adhered ridge waveguide in LiNbO3. Appl. Phys. Lett., 89, 191123(2006).

    [22] M. Jazbinsek, L. Mutter, P. Gunter. Photonic applications with the organic nonlinear optical crystal DAST. IEEE J. Sel. Top. Quantum Electron., 14, 1298-1311(2008).

    [23] C. Sliwa, K. Banaszek. Conditional preparation of maximal polarization entanglement. Phys. Rev. A, 67, 030101(2003).

    [24] J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, D. Englund. High-dimensional quantum key distribution using dispersive optics. Phys. Rev. A, 87, 62322(2013).

    Yuanhua Li, Tong Xiang, Yiyou Nie, Minghuang Sang, Xianfeng Chen. Nonlinear interaction between broadband single-photon-level coherent states[J]. Photonics Research, 2017, 5(4): 324
    Download Citation