[1] LIU H, YU Q, TAN Y G, et al. Feasibility study on temperature distribution measurement method of thrust sliding bearing bush based on FBG quasi-distributed sensing[J]. Sensors, 2019, 19(14): 3245-1-3245-15.
[2] LU X, THOMAS P J, HELLEVANG J O. A review of methods for fibre-optic distributed chemical sensing[J]. Sensors, 2019, 19(13): 2876-1-2876-20.
[3] CAO D F, FANG H Y, WANG F M, et al. A fiber Bragg-grating-based miniature sensor for the fast detection of soil moisture profiles in highway slopes and subgrades[J]. Sensors, 2018, 18(12): 4431-1-4431-16.
[4] ZHU H H, SHI B, ZHANG C. FBG-based monitoring of geohazards: current status and trends[J]. Sensors, 2017, 17(3): 452-1-452-24.
[5] XIAO G L,OU Z T,YANG H Y, et al. An integrated detection based on a multi-parameter plasmonic optical fiber sensor[J]. Sensors, 2021, 21(3):1-14.
[6] LU Bin, PAN Zhengqing, WANG Zhaoyong, et al. High spatial resolution phase sensitive optical time domain reflectometer[J]. Optics Letters, 2017, 42(3): 391-394.
[7] HICKE K, EISERMANN R, CHRUSCICKI S. Enhanced distributed fiber optic vibration sensing and simultaneous temperature gradient sensing using traditional C-OTDR and structured fiber with scattering dots[J]. Sensors, 2019, 19(19): 4114-1-4114-23.
[8] DONKO A, BERESNA M, JUNG Y, et al. Point-by-point femtosecond laser micro-processing of independent core-specific fiber Bragg gratings in a multi-core fiber[J]. Opt. Express, 2018, 26: 2039-2044.
[9] DONKO A, SANDOGHCHI, R, MASOUDI A, et al. Low-loss micro-machined fiberwith rayleigh backscattering enhanced by two orders of magnitude[C]//OFS. Proceedings of the 26th International Conference on Optical Fiber Sensors. Lausanne: OFS, 2018: WF75-1-WF75-4.
[10] DONKO A, SANDOGHCHI R, MASOUDI A, et al. Surpassing the detection limits of current distributed acoustic sensing systems (Conference Presentation) [C]//SPIE. Proceedings of the 46th ESAO Congress. Hannover: SPIE, 2019: 387-474.
[11] YANG M, SU H Z. A study for optical fiber multi-direction strain monitoring technology[J]. Optik, 2017, 144: 324-333.
[12] FENG C, PREUSSLER S, KADUM J E, et al. Measurement accuracy enhancement via radio frequency filtering in distributed brillouin sensing[J]. Sensors, 2019, 19(13): 2878-1-2878-9.
[13] ZHANG D Y, YANG Y, XU J L, et al. Structural crack detection using DPP-BOTDA and crack-induced features of the brillouin gain spectrum[J]. Sensors, 2020, 20(23): 6947-1-6947-25.
[14] BADAR M, LU PING, BURIC M, et al. Integrated auxiliary interferometer for self-correction of nonlinear tuning in optical frequency domain reflectometry[J]. Journal of Lightwave Technology, 2020, 38(21): 6097-6103.
[15] ZHAO Shiyuan, CUI Jiwen, WU Zhanjun, et al. Accuracy improvement in OFDR-based distributed sensing system by image processing[J]. Optics and Lasers in Engineering, 2020, 124: 105824-1-105824-10.
[16] YANG X C, LU Y, LIU B L, et al. Simultaneous measurement of refractive index and temperature based on SPR in D-shaped MOF[J]. Applied Optics, 2017, 56(15): 4369-4374.
[17] XING C, KE C J, GUO Z, et al. Distributed multi-parameter sensing utilizing Brillouin frequency shifts contributed by multiple acoustic modes in SSMF[J]. Optics Express, 2018, 26(22): 28793-28807.
[18] LI J, CHEN G Y, MA P, et al. Sampled Bragg gratings formed in helically twisted fibers and their potential application for the simultaneous measurement of mechanical torsion and temperature[J]. Optics Express, 2018, 26(10): 12903-12911.
[19] KAVUNGAL V, FARRELL G, WU Q, et al. Packaged inline cascaded optical micro-resonators for multi- parameter sensing[J]. Optical Fiber Tech-nology, 2019, 50: 50-54.
[20] FENG Q, TANG M, OU J P. Monolithic multicore fiber based multi-parameter measurement based on spatial-division-multiplex sensing mechanisms[J]. Measurement, 2020, 151: 107128-1-107128-7.
[21] CARLOS E S C, HOZIANNA C B X, RODOLPHO L S, et al. Multi-parameter interferometric sensor based on a reduced diameter core axial offseted fiber[J]. IEEE Photonics Technology Letters, 2017, 29(2): 239-242.
[22] PAN J S, ZHOU J, YI X W, et al. Multi-dimensional optical fiber sensing enabled by digital coherent optical technologies[J]. Journal of Lightwave Technology, 2019, 37(11): 2488-2501.