• Photonics Research
  • Vol. 8, Issue 2, 175 (2020)
Wangqi Mao1, Mingming Jiang1、2、*, Jiaolong Ji1, Peng Wan1, Xiangbo Zhou1, and Caixia Kan1、2、3
Author Affiliations
  • 1College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • 2Key Laboratory for Intelligent Nano Materials and Devices (MOE), Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • 3e-mail: cxkan@nuaa.edu.cn
  • show less
    DOI: 10.1364/PRJ.8.000175 Cite this Article Set citation alerts
    Wangqi Mao, Mingming Jiang, Jiaolong Ji, Peng Wan, Xiangbo Zhou, Caixia Kan. Microcrystal modulated exciton-polariton emissions from single ZnO@ZnO:Ga microwire[J]. Photonics Research, 2020, 8(2): 175 Copy Citation Text show less
    References

    [1] Y. Peng, W. Lu, P. Ren, Y. Ni, Y. Wang, L. Zhang, Y.-J. Zeng, W. Zhang, S. Ruan. Integration of nanoscale light emitters: an efficient ultraviolet and blue random lasing from NAYF4:Yb/Tm hexagonal nanocrystals. Photon. Res., 6, 943-947(2018).

    [2] D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, S. Aloni, J. B. Neaton, E. M. Chan, B. E. Cohen, P. J. Schuck. Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission. Nat. Photonics, 12, 402-407(2018).

    [3] X. Liu, K. Mashooq, D. A. Laleyan, E. T. Reid, Z. Mi. Algan nanocrystals: building blocks for efficient ultraviolet optoelectronics. Photon. Res., 7, B12-B23(2019).

    [4] J. J. Cole, X. Wang, R. J. Knuesel, H. O. Jacobs. Integration of ZnO microcrystals with tailored dimensions forming light emitting diodes and UV photovoltaic cells. Nano Lett., 8, 1477-1481(2008).

    [5] H. Siampour, S. Kumar, V. A. Davydov, L. F. Kulikova, V. N. Agafonov, S. I. Bozhevolnyi. On-chip excitation of single germanium-vacancies in nanodiamonds embedded in plasmonic waveguides. Light Sci. Appl., 7, 61(2018).

    [6] Y. Wu, Z. Li, K.-W. Ang, Y. Jia, Z. Shi, Z. Huang, W. Yu, X. Sun, X. Liu, D. Li. Monolithic integration of MoS2-based visible detectors and GaN-based UV detectors. Photon. Res., 7, 1127-1133(2019).

    [7] Y. Wang, X. Wang, B. Zhu, Z. Shi, J. Yuan, X. Gao, Y. Liu, X. Sun, D. Li, H. Amano. Full-duplex light communication with a monolithic multicomponent system. Light Sci. Appl., 7, 83(2018).

    [8] J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, Y. Arakawa. Room-temperature lasing in a single nanowire with quantum dots. Nat. Photonics, 9, 501-505(2015).

    [9] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature, 415, 617-620(2002).

    [10] P. Narayan, G. David, T. Jason, X. Peng. An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals. J. Am. Chem. Soc., 127, 17586-17587(2005).

    [11] Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T. W. Koh, G. D. Scholes, B. P. Rand. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics, 11, 108-115(2017).

    [12] T. Uchino, D. Okutsu. Broadband laser emission from color centers inside MgO microcrystals. Phys. Rev. Lett., 101, 117401(2008).

    [13] R. Saran, R. J. Curry. Lead sulphide nanocrystal photodetector technologies. Nat. Photonics, 10, 81-92(2016).

    [14] X. Wang, J. Zhuang, Q. Peng, Y. Li. A general strategy for nanocrystal synthesis. Nature, 437, 121-124(2005).

    [15] F. P. Garcia de Arquer, A. Armin, P. Meredith, E. H. Sargent. Corrigendum: solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater., 2, 16100(2017).

    [16] I. Song, S. C. Lee, X. Shang, J. Ahn, H. J. Jung, C. U. Jeong, S. W. Kim, W. Yoon, H. Yun, O. P. Kwon. High-performance visible-blind UV phototransistors based on n-type naphthalene diimide nanomaterials. ACS Appl. Mater. Interface, 10, 11826-11836(2018).

    [17] X. Zhang, J. Jie, W. Deng, Q. Shang, J. Wang, H. Wang, X. Chen, X. Zhang. Alignment and patterning of ordered small-molecule organic semiconductor micro-/nanocrystals for device applications. Adv. Mater., 28, 2475-2503(2016).

    [18] D. Sun, D. Yi, X. Tian, Z. Li, Z. Chen, C. Zhu. Microwave-assisted synthesis and optical properties of cuprous oxide micro/nanocrystals. Mater. Res. Bull., 60, 704-708(2014).

    [19] W. Cao, W. Du, F. Su, G. Li. Anti-Stokes photoluminescence in ZnO microcrystal. Appl. Phys. Lett., 89, 031902(2006).

    [20] H. Dong, Y. Wei, W. Zhang, C. Wei, C. Zhang, J. Yao, Y. S. Zhao. Broadband tunable microlasers based on controlled intramolecular charge-transfer process in organic supramolecular microcrystals. J. Am. Chem. Soc., 138, 1118-1121(2016).

    [21] B. Yang, H. Chen, X. Shuang, Q. Xue, Z. Teng, Z. Zhu, L. Qiang, H. Chen, Y. Yun, Z. Hu. Effects of a molecular monolayer modification of NiO nanocrystal layer surfaces on perovskite crystallization and interface contact toward faster hole extraction and higher photovoltaic performance. Adv. Funct. Mater., 26, 2950-2958(2016).

    [22] L. Korala, M. Braun, J. M. Kephart, Z. Tregillus, A. L. Prieto. Ligand-exchanged CZTS nanocrystal thin films: does nanocrystal surface passivation effectively improve photovoltaic performance?. Chem. Mater., 29, 6621-6629(2017).

    [23] X. Wang, H. Li, Y. Wu, Z. Xu, H. Fu. Tunable morphology of the self-assembled organic microcrystals for the efficient laser optical resonator by molecular modulation. J. Am. Chem. Soc., 136, 16602-16608(2014).

    [24] H. He, E. Ma, J. Yu, Y. Cui, Y. Lin, Y. Yang, X. Chen, B. Chen, G. Qian. Periodically aligned dye molecules integrated in a single MOF microcrystal exhibit single-mode linearly polarized lasing. Adv. Opt. Mater., 5, 1601040(2017).

    [25] J. W. Soares, J. E. Whitten, D. W. Oblas, D. M. Steeves. Novel photoluminescence properties of surface-modified nanocrystalline zinc oxide: toward a reactive scaffold. Langmuir, 24, 371-374(2008).

    [26] Z. Wang, J. Christiansen, D. Wezendonk, X. Xie, M. A. van Huis, A. Meijerink. Thermal enhancement and quenching of upconversion emission in nanocrystals. Nanoscale, 11, 12188-12197(2019).

    [27] O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, J. Zuniga-Perez. Edge-emitting polariton laser and amplifier based on a ZnO waveguide. Light Sci. Appl., 7, 82(2017).

    [28] M. Jiang, W. Mao, X. Zhou, C. Kan, D. N. Shi. Wavelength-tunable waveguide emissions from electrically driven single ZnO/ZnO:Ga superlattice microwires. ACS Appl. Mater. Interface, 11, 11800-11811(2019).

    [29] M. Jiang, G. He, H. Chen, Z. Zhang, L. Zheng, C. Shan, D. Shen, X. Fang. Wavelength-tunable electroluminescent light sources from individual Ga-doped ZnO microwires. Small, 13, 1604034(2017).

    [30] Z. Li, M. Jiang, Y. Sun, Z. Zhang, B. Li, H. Zhao, C. Shan, D. Shen. Electrically pumped Fabry–Perot microlasers from single Ga-doped ZnO microbelt based heterostructure diodes. Nanoscale, 10, 18774-18785(2018).

    [31] C. Xu, J. Dai, G. Zhu, G. Zhu, L. Yi, J. Li, Z. Shi. Whispering gallery mode lasing in ZnO microcavities. Laser Photon. Rev., 8, 469-494(2014).

    [32] Y. Liu, M. Jiang, Z. Zhang, B. Li, H. Zhao, C. Shan, D. Shen. Electrically excited hot-electron dominated fluorescent emitters using individual Ga-doped ZnO microwires via metal quasiparticle film decoration. Nanoscale, 10, 5678-5688(2018).

    [33] W. Peng, S. Qu, G. Cong, Z. Wang. Synthesis and structures of morphology-controlled ZnO nano- and microcrystals. Cryst. Growth Des., 6, 1518-1522(2006).

    [34] Z. Li, F. Xu, X. Sun, W. Zhang. Oriented attachment in vapor: formation of ZnO three-dimensional structures by intergrowth of ZnO microcrystals. Cryst. Growth Des., 8, 805-807(2008).

    [35] J. Dai, C. Xu, T. Nakamura, Y. Wang, J. Li, Y. Lin. Electron-hole plasma induced band gap renormalization in ZnO microlaser cavities. Opt. Express, 22, 28831-28837(2014).

    [36] M. Ding, D. Zhao, B. Yao, E. Shulin, Z. Guo, L. Zhang, D. Shen. The ultraviolet laser from individual ZnO microwire with quadrate cross section. Opt. Express, 20, 13657-13662(2012).

    [37] Y. Liu, M. Jiang, G. He, S. Li, Z. Zhang, B. Li, H. Zhao, C. Shan, D. Z. Shen. Wavelength-tunable ultraviolet electroluminescence from Ga-doped ZnO microwires. ACS Appl. Mater. Interface, 9, 40743-40751(2017).

    [38] G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. X. Tang, I. Shafiq, Z. Z. Ye, C. S. Lee, S. T. Lee. Tunable n-type conductivity and transport properties of Ga-doped ZnO nanowire arrays. Adv. Mater., 20, 168-173(2010).

    [39] W. T. Ruane, K. M. Johansen, K. D. Leedy, D. C. Look, W. H. Von, M. Grundmann, G. C. Farlow, L. J. Brillson. Defect segregation and optical emission in ZnO nano- and microwires. Nanoscale, 8, 7631-7637(2016).

    [40] T. Nakamura, K. Firdaus, S. Adachi. Electron-hole plasma lasing in a ZnO random laser. Phys. Rev. B, 86, 205103(2012).

    [41] R. Chen, Q. L. Ye, T. He, V. D. Ta, Y. Ying, Y. Y. Tay, T. Wu, H. Sun. Exciton localization and optical properties improvement in nanocrystal-embedded ZnO core–shell nanowires. Nano Lett., 13, 734-739(2013).

    [42] D. Mrinal, T. Lavanya, T. Pham Van, F. Naoki. High efficiency hybrid solar cells using nanocrystalline Si quantum dots and Si nanowires. ACS Nano, 9, 6891-6899(2015).

    [43] M.-P. Zhuo, X.-Y. Fei, Y.-C. Tao, J. Fan, X.-D. Wang, W.-F. Xie, L.-S. Liao. In situ construction of one-dimensional component-interchange organic core/shell microrods for multicolor continuous-variable optical waveguide. ACS Appl. Mater. Interface, 11, 5298-5305(2019).

    [44] B. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna, F. Auras, J. M. Richter, L. Yang, L. Dai, M. Alsari, X.-J. She, L. Liang, J. Zhang, S. Lilliu, P. Gao, H. J. Snaith, J. Wang, N. C. Greenham, R. H. Friend, D. Di. High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes. Nat. Photonics, 12, 783-789(2018).

    [45] H. Dong, C. Zhang, Y. Liu, Y. Yan, F. Hu, Y. S. Zhao. Organic microcrystal vibronic lasers with full-spectrum tunable output beyond the Franck–Condon principle. Angew. Chem., 130, 3162-3166(2018).

    [46] H. Wang, J. Wen, W. Wang, N. Xu, P. Liu, J. Yan, H. Chen, S. Deng. Resonance coupling in heterostructures composed of silicon nanosphere and monolayer WS2: a magnetic-dipole-mediated energy transfer process. ACS Nano, 13, 1739-1750(2019).

    [47] F. Di Stasio, A. Polovitsyn, I. Angeloni, I. Moreels, R. Krahne. Broadband amplified spontaneous emission and random lasing from wurtzite CdSe/CdS ‘giant-shell’ nanocrystals. ACS Photon., 3, 2083-2088(2016).

    [48] B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, D. Zhao. Solar-blind avalanche photodetector based on single ZnO-Ga2O3 core–shell microwire. Nano Lett., 15, 3988-3993(2015).

    [49] Z. Chen, S. Berciaud, C. Nuckolls, T. F. Heinz, L. E. Brus. Energy transfer from individual semiconductor nanocrystals to graphene. ACS Nano, 4, 2964-2968(2010).

    [50] R. Begum, M. R. Parida, A. L. Abdelhady, B. Murali, N. M. Alyami, G. H. Ahmed, M. N. Hedhili, O. M. Bakr, O. F. Mohammed. Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping. J. Am. Chem. Soc., 139, 731-737(2016).

    [51] S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Hofling, M. Kamp, S. Reitzenstein. Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling. Light Sci. Appl., 6, e17030(2017).

    [52] D. Vanmaekelbergh, L. K. van Vugt. ZnO nanowire lasers. Nanoscale, 3, 2783-2800(2011).

    [53] Z. Zhang, Y. Wang, S. Yin, T. Hu, Y. Wang, L. Liao, S. Luo, J. Wang, X. Zhang, P. Ni, X. Shen, C. Shan, Z. Chen. Exciton-polariton light-emitting diode based on a ZnO microwire. Opt. Express, 25, 17375-17381(2017).

    [54] W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, T. Wu. Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry–Perot cavity. ACS Photon., 5, 2051-2059(2018).

    [55] J. Lagois. Depth-dependent eigenenergies and damping of excitonic polaritons near a semiconductor surface. Phys. Rev. B, 23, 5511-5520(1981).

    [56] L. Sun, Z. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, X. Shen. Direct observation of whispering gallery mode polaritons and their dispersion in a ZnO tapered microcavity. Phys. Rev. Lett., 100, 156403(2008).

    [57] A. Chen, H. Zhu, Y. Wu, G. Lou, Y. Liang, J. Li, Z. Chen, Y. Ren, X. Gui, S. Wang, Z. Tang. Electrically driven single microwire-based heterojuction light-emitting devices. ACS Photon., 4, 1286-1291(2017).

    [58] J. Dai, C. X. Xu, X. W. Sun. ZnO-microrod/p-gan heterostructured whispering-gallery-mode microlaser diodes. Adv. Mater., 23, 4115-4119(2011).

    [59] Y. Lai, Y. Lan, T. Lu. Strong light-matter interaction in ZnO microcavities. Light Sci. Appl., 2, e76(2013).

    [60] L. Sun, H. Dong, W. Xie, Z. An, X. Shen, Z. Chen. Quasi-whispering gallery modes of exciton-polaritons in a ZnO microrod. Opt. Express, 18, 15371-15376(2010).

    [61] S. Zhang, Q. Shang, W. Du, J. Shi, Z. Wu, Y. Mi, J. Chen, F. Liu, Y. Li, M. Liu, Q. Zhang, X. Liu. Strong exciton-photon coupling in hybrid inorganic–organic perovskite micro/nanowires. Adv. Opt. Mater., 6, 1701032(2018).

    Wangqi Mao, Mingming Jiang, Jiaolong Ji, Peng Wan, Xiangbo Zhou, Caixia Kan. Microcrystal modulated exciton-polariton emissions from single ZnO@ZnO:Ga microwire[J]. Photonics Research, 2020, 8(2): 175
    Download Citation