• Chinese Journal of Lasers
  • Vol. 48, Issue 23, 2310001 (2021)
Jun Liu1、*, Yumu Yao1, Peinan Li2, and Jingyun Liu1
Author Affiliations
  • 1College of Urban Railway Transportation, Shanghai University of Engineering Science, Shanghai 201620, China
  • 2College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
  • show less
    DOI: 10.3788/CJL202148.2310001 Cite this Article Set citation alerts
    Jun Liu, Yumu Yao, Peinan Li, Jingyun Liu. Parameter Optimization Wavelet Denoising Algorithm for Full-Waveforms Data of Laser Altimetry Satellite[J]. Chinese Journal of Lasers, 2021, 48(23): 2310001 Copy Citation Text show less
    Waveform comparison of soft and hard thresholds. (a) Waveform processing result under soft threshold; (b) waveform processing result under hard threshold
    Fig. 1. Waveform comparison of soft and hard thresholds. (a) Waveform processing result under soft threshold; (b) waveform processing result under hard threshold
    Approximate components of GLAS full-waveform wavelet decomposition
    Fig. 2. Approximate components of GLAS full-waveform wavelet decomposition
    Detail components of GLAS full-waveform wavelet decomposition
    Fig. 3. Detail components of GLAS full-waveform wavelet decomposition
    Center points of ICESat laser altimetry footprint
    Fig. 4. Center points of ICESat laser altimetry footprint
    Original echo waveform
    Fig. 5. Original echo waveform
    Comparison of filtering effects under various filtering methods
    Fig. 6. Comparison of filtering effects under various filtering methods
    Verification of the inflection point extraction of the waveform
    Fig. 7. Verification of the inflection point extraction of the waveform
    FamilyShort nameOrthogonalBiorthogonalCompact supportSupport widthFilters lengthSymmetryVanishing moment
    HaarhaarYesYesYes12Symmetry1
    DmeyerdmeyYesYesYesSymmetry
    Fejer-korovkinfkYesYes
    DaubechiesdbYesYesYes2n-12nAsymmetry(except db1)N
    SymletssymYesYesYes2n-12nApproximately symmetryN
    CoifletscoifYesYesYes6n-16nApproximately symmetry2N
    BiorthogonalbiorNoYesYesDecompose: 2nr+1Reconstruct: 2nd+1max(2nr, 2nd)+2SymmetryNr
    ReversebiorrbioNoYesYesDecompose: 2Nr+1Reconstruct: 2Nd+1max(2Nr, 2nd)+2SymmetryNd
    Table 1. Parameter characteristics of commonly used wavelet basis function name
    Short nameSpecific orderNumber
    haarhaar1
    dmeydmey1
    fkfk4, fk6, fk8, fk14, fk18, fk226
    dbdb1, db2, db3, db4, db5, db6, db7, db8, db9, db1010
    symsym1, sym2, sym3, sym4, sym5, sym6, sym7, sym88
    coifcoif1, coif2, coif3, coif4, coif55
    Short nameSpecific orderNumber
    biorbior1.1, bior1.3, bior1.5, bior2.2, bior2.4, bior2.6, bior2.8, bior3.1, bior3.3, bior3.5, bior3.7, bior3.9, bior4.4, bior5.5, bior6.815
    rbiorbio1.1, rbio1.3, rbio1.5, rbio2.2, rbio2.4, rbio2.6, rbio2.8, rbio3.1, rbio3.3, rbio3.5, rbio3.7, rbio3.9, rbio4.4, rbio5.5, rbio6.815
    Table 2. Order of wavelet basis functions used in this paper
    No.TPTRSORHSCALNBDWNAMESNR /dB
    1Rigrsurehsln3rbio3.334.00
    2Rigrsurehsln3db442.56
    3Rigrsurehsln3bior2.639.38
    4Rigrsurehsln3bior2.443.90
    5Rigrsurehsln3bior2.440.99
    6Rigrsurehsln3rbio5.548.40
    7Rigrsurehsln3sym243.65
    8Rigrsurehsln3bior3.939.45
    9Rigrsurehsln3db433.23
    10Rigrsurehsln3bior6.838.42
    Table 3. Combination of ten optimal control parameters
    No.SNR /dBPSNRMSEMAE
    PGFGFWFPGFGFWFPGFGFWFPGFGFWF
    16.7012.5534.0026.8331.2652.010.84×10-20.51×10-20.46×10-30.38×10-20.51×10-20.32×10-3
    24.1315.1942.5627.3036.4763.103.62×10-21.26×10-20.59×10-30.52×10-20.90×10-20.41×10-3
    34.9216.5439.3828.1137.5659.764.64×10-21.56×10-21.21×10-30.61×10-21.15×10-20.85×10-3
    48.3918.5943.9027.6137.0461.865.86×10-21.98×10-21.14×10-30.76×10-21.39×10-20.73×10-3
    57.8919.1640.9928.0038.2759.684.59×10-21.41×10-21.20×10-30.76×10-21.59×10-20.82×10-3
    612.2918.6548.4028.4234.2663.635.48×10-22.80×10-20.95×10-31.12×10-21.85×10-20.64×10-3
    713.6318.4243.6531.4235.8760.633.84×10-22.31×10-21.33×10-30.91×10-21.40×10-20.94×10-3
    83.9314.4839.4527.6235.8660.072.27×10-20.88×10-20.54×10-30.43×10-20.73×10-20.32×10-3
    97.4813.8833.2327.7733.3252.080.89×10-20.47×10-20.54×10-30.33×10-20.49×10-20.36×10-3
    108.0518.4138.4227.4936.8656.503.18×10-21.08×10-21.12×10-30.52×10-20.94×10-20.82×10-3
    Table 4. Quantitative evaluation of noise reduction effect of each filtering method
    No.Elevation /m
    MeasuredBy GLAH14By GD-OEBy GD-OE and WFBy EPEBy EPE and WFBy EPCBy EPC and WF
    19.207.648.257.808.257.807.677.71
    280.7078.846.9031.0582.0582.0580.7080.70
    380.500.000.604.0581.4581.4581.3981.47
    480.903.918.1022.8079.5078.9078.9079.21
    519.306.384.357.503.454.3518.6519.05
    618.7020.0120.1020.8520.1019.9520.0620.24
    718.6017.2618.6018.0018.6018.0018.6018.60
    818.6017.840.000.0018.3018.0017.8518.10
    919.000.0019.0518.6018.9021.6018.5318.46
    1012.9012.3013.2013.0515.1515.1512.3612.45
    Mean35.8416.429.9214.3734.5834.7335.4735.60
    MSE35.9842.0729.005.145.101.020.98
    Table 5. Altimetry results of seven decomposition methods
    Jun Liu, Yumu Yao, Peinan Li, Jingyun Liu. Parameter Optimization Wavelet Denoising Algorithm for Full-Waveforms Data of Laser Altimetry Satellite[J]. Chinese Journal of Lasers, 2021, 48(23): 2310001
    Download Citation