• Nano-Micro Letters
  • Vol. 15, Issue 1, 226 (2023)
Hualing He1,2,†, Yi Qin1,†, Zhenyu Zhu1, Qing Jiang1..., Shengnan Ouyang2, Yuhang Wan1, Xueru Qu1, Jie Xu1 and Zhicai Yu1,2,3,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, People’s Republic of China
  • 2National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing and Finishing, Wuhan Textile University, Wuhan 430200, People’s Republic of China
  • 3Jiangsu New Horizon Advanced Functional Fiber Innovation Center Co., Ltd., Suzhou 215000, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01200-8 Cite this Article
    Hualing He, Yi Qin, Zhenyu Zhu, Qing Jiang, Shengnan Ouyang, Yuhang Wan, Xueru Qu, Jie Xu, Zhicai Yu. Temperature-Arousing Self-Powered Fire Warning E-Textile Based on p–n Segment Coaxial Aerogel Fibers for Active Fire Protection in Firefighting Clothing[J]. Nano-Micro Letters, 2023, 15(1): 226 Copy Citation Text show less
    References

    [1] C.-F. Cao, B. Yu, Z.-Y. Chen, Y.-X. Qu, Y.-T. Li et al., Fire Intumescent, high-temperature resistant, mechanically flexible graphene oxide network for exceptional fire shielding and ultra-fast fire warning. Nano-Micro Lett. 14, 92 (2022).

    [2] H. Chen, J.Y. Zhou, S. Liu, S. Wang, X.L. Gong, Flame-retardant triboelectric generator with stable thermal-mechanical-electrical coupling performance for fire Bluetooth alarm system. Nano Energy 102, 107634 (2022).

    [3] F. Khan, S.C. Wang, Z.W. Ma, A. Ahmed, P.A. Song et al., A durable, flexible, large-area, flame-retardant, early fire warning sensor with built-in patterned electrodes. Small Methods 5, 2001040 (2021).

    [4] X. He, Y.T. Feng, F.L. Xu, F.-F. Chen, Y. Yu, Smart fire alarm systems for rapid early fire warning: advances and challenges. Chem. Eng. J. 450, 137927 (2022).

    [5] C.C. Jiang, X.J. Lai, Z.Z. Wu, H.Q. Li, X.R. Zeng et al., A high-thermopower ionic hydrogel for intelligent fire protection. J. Mater. Chem. A 10, 21368–21378 (2022).

    [6] C.C. Jiang, J.Y. Chen, X.J. Lai, H.Q. Li, X.R. Zeng et al., Mechanically robust and multifunctional polyimide/MXene composite aerogel for smart fire protection. Chem. Eng. J. 434, 134630 (2022).

    [7] Y.S. Wang, J.R. Liu, Y.H. Zhao, Y. Qin, Z.Y. Zhu et al., Temperature-triggered fire warning PEG@wood powder/carbon nanotube/calcium alginate composite aerogel and the application for firefighting clothing. Compos. B Eng. 247, 110348 (2022).

    [8] S. Mandal, G.W. Song, I.B. Grover, Modeling of hot water and steam protective performance of fabrics used in Firefighters’ clothing. Fire Mater. 46, 463–475 (2022).

    [9] Y. Su, J. Yang, R. Li, G.W. Song, J. Li, Effect of compression on thermal protection of firefighting protective clothing under flame exposure. Fire Mater. 43, 802–810 (2019).

    [10] H.L. He, Y. Qin, J.R. Liu, Y.S. Wang, J.F. Wang et al., A wearable self-powered fire warning e-textile enabled by aramid nanofibers/MXene/silver nanowires aerogel fiber for fire protection used in firefighting clothing. Chem. Eng. J. 460, 141661 (2023).

    [11] L. Liu, J.B. Feng, Y.J. Xue, V. Chevali, Y.B. Zhang et al., 2D MXenes for fire retardancy and fire-warning applications: promises and prospects. Adv. Funct. Mater. 33, 2212124 (2023).

    [12] G.Y. Zhang, L.H. Lu, C.L. Shi, X.D. Qian, The study of coupling effects of humidity-heat on the protection performance of protective clothing for fire fighting. Fire Mater. 44, 923–934 (2022).

    [13] H.U. Ohalele, M. Fulton, D.A. Torvi, S.D. Noble, J.C. Batcheller, Effects of high heat flux exposures on tensile strength of firefighters’ protective clothing. Fire Mater. 46(4), 719–731 (2022).

    [14] X.M. Zhang, J. Hu, Q.X. Yang, H.M. Yang, H.K. Yang et al., Harvesting multidirectional breeze energy and self-powered intelligent fire detection systems based on triboelectric nanogenerator and fluid-dynamic modeling. Adv. Funct. Mater. 31, 2106527 (2021).

    [15] Y.Y. Mao, D. Wang, J.L. Hu, S.H. Fu, Mechanically flexible and flame retardant polyphenol-bridged casein/MXene composite for fire proofing repeatable contact/non-contact fire monitoring. Chem. Eng. J. 454, 140161 (2023).

    [16] T.P. Ding, Y. Zhou, X.-Q. Wang, C. Zhang, T.T. Li et al., All-soft and stretchable thermogalvanic gel fabric for antideformity body heat harvesting wearable. Adv. Energy Mater. 11, 2102219 (2021).

    [17] H.L. He, J.R. Liu, Y.S. Wang, Y.H. Zhao, Y. Qin et al., An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 16(2), 2953–2967 (2022).

    [18] X.L. Li, J.S.D.R. Saez, X. Ao, A. Yusuf, D.-Y. Wang, Highly-sensitive fire alarm system based on cellulose paper with low-temperature response and wireless signal conversion. Chem. Eng. J. 431, 134108 (2022).

    [19] B.L. Wang, X.J. Lai, H.Q. Li, C.C. Jiang, J.F. Gao et al., Multifunctional MXene/chitosan-coated cotton fabric for intelligent fire protection. ACS Appl. Mater. Interfaces 13, 23020–23029 (2021).

    [20] M. Mao, H. Xu, K.-Y. Guo, J.-W. Zhang, Q.-Q. Xia et al., Mechanically flexible, super-hydrophobic and flame-retardant hybrid nano-silica/graphene oxide wide ribbon decorated sponges for efficient oil/water separation and fire warning response. Compos. A Appl. Sci. Manuf. 140, 106191 (2021).

    [21] L.-Y. Lv, C.-F. Cao, Y.-X. Qu, G.-D. Zhang, L. Zhao et al., Smart fire-warning materials and sensors: design principle, performances, and applications. Mater. Sci. Eng. R Rep. 150, 100690 (2022).

    [22] M.J. Zhang, M.L. Wang, M.X. Zhang, C.G. Yang, Y.N. Li et al., Flexible and thermally induced switchable fire alarm fabric based on layer-by-layer self-assembled silver sheet/Fe3O4 nanowire composite. ACS Appl. Mater. Interfaces 11, 47456–47467 (2019).

    [23] J.C. Dong, Y.D. Peng, Y.T. Zhang, Y.J. Chai, J.Y. Long et al., Superelastic radiative cooling metafabric for comfortable epidermal electrophysiological monitoring. Nano-Micro Lett. 15, 181 (2022).

    [24] J.C. Dong, Y.D. Peng, X.L. Nie, L. Li, C. Zhang et al., Hierarchically designed super-elastic metafabric for thermal-wet comfortable and antibacterial epidermal electrode. Adv. Funct. Mater. 32, 2209762 (2022).

    [25] X.L. Li, S.Z. Lyu, J.C. Jia, N.W. Gao, X. Wu et al., A Bio-inspired temperature-arousing battery with giant power for fire alarming. Adv. Funct. Mater (2023).

    [26] Y.D. Peng, J.C. Dong, J.H. Sun, Y.H. Mao, Y.X. Zhang et al., Multimodal health monitoring via a hierarchical and ultrastretchable all-in-one electronic textile. Nano Energy 110, 108374 (2023).

    [27] J.C. Dong, X.W. Tang, Y.D. Peng, C.H. Fan, L. Li et al., Highly permeable and ultrastretchable E-textiles with EGaIn-superlyophilicity for on-skin health monitoring, joule heating, and electromagnetic shielding. Nano Energy 108, 108194 (2023).

    [28] Y.Y. Zheng, X. Han, J.W. Yang, Y.Y. Jing, X.Y. Chen et al., Durable, stretchable and washable inorganic-based woven thermoelectric textiles for power generation and solid-state cooling. Energy Environ. Sci. 15, 2374–2385 (2022).

    [29] T.T. Sun, B.Y. Zhou, Q. Zheng, L.J. Wang, W. Jiang et al., Stretchable fabric generates electric power from woven thermoelectric fibers. Nat. Commun. 11, 572 (2020).

    [30] X. Wu, N.W. Gao, X.T. Zheng, X.L. Tao, Y.L. He et al., Self-powered and green ionic-type thermoelectric paper chips for early fire alarming. ACS Appl. Mater. Interfaces 12, 27691–27699 (2020).

    [31] H.L. Xie, X.J. Lai, H.Q. Li, J.F. Gao, X.R. Zeng, Skin-inspired thermoelectric nanocoating for temperature sensing and fire safety. J. Colloid Interface Sci. 602, 756–766 (2021).

    [32] B. Wu, W. Wei, Y. Guo, W.H. Yip, B.K. Tay et al., Stretchable thermoelectric generators with enhanced output by infrared reflection for wearable application. Chem. Eng. J. 453, 139749 (2023).

    [33] M. Zhou, S.J. Tan, J.W. Wang, Y. Wu, L.L. Liang et al., “Three-in-One” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano-Micro Lett. 15, 176 (2023).

    [34] B. Wu, Y. Guo, C.Y. Hou, Q.H. Zhang, Y.G. Li et al., High-performance flexible thermoelectric devices based on all-inorganic hybrid films for harvesting low-grade heat. Adv. Funct. Mater. 29, 1900304 (2019).

    [35] X.Y. He, J.T. Gu, Y.N. Hao, M.R. Zheng, L.M. Wang et al., Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chem. Eng. J. 450, 137937 (2022).

    [36] Y.J. He, S.W. Li, R. Chen, X. Liu, G.O. Odunmbaku et al., Ion-electron coupling enables ionic thermoelectric material with new operation mode and high energy density. Nano-Micro Lett. 15, 101 (2023).

    [37] H.Q. Liu, F. Zhou, X.Y. Shi, K.Y. Sun, Y. Kou et al., Flexible, Highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5G base stations and thermoelectric generators. Nano-Micro Lett. 15, 31 (2023).

    [38] Y.F. Liu, P.P. Liu, Q.L. Jiang, F.X. Jiang, J. Liu et al., Organic/inorganic hybrid for flexible thermoelectric fibers. Chem. Eng. J. 405, 126510 (2021).

    [39] D.W. Qu, X. Li, H.F. Wang, G.M. Chen, Assembly strategy and performance evaluation of flexible thermoelectric devices. Adv. Sci. 6, 1900584 (2019).

    [40] D. Jang, K.T. Park, S.-S. Lee, H. Kim, Highly stretchable three-dimensional thermoelectric fabrics exploiting woven structure deformability and passivation-induced fiber elasticity. Nano Energy 97, 107143 (2022).

    [41] T.P. Ding, K.H. Chan, Y. Zhou, X.-Q. Wang, Y. Cheng et al., Scalable thermoelectric fibers for multifunctional textile-electronics. Nat. Commun. 11, 6006 (2020).

    [42] Y.N. Shen, X. Han, P.Y. Zhang, X.Y. Chen, X. Yang et al., Review on fiber-based thermoelectrics: materials, devices, and textiles. Adv. Fiber Mater. (2023).

    [43] X.N. Yang, K. Zhang, Direct wet-spun single-walled carbon nanotubes-based p−n segmented filaments toward wearable thermoelectric textiles. ACS Appl. Mater. Interfaces 14, 44704–44712 (2022).

    [44] L.X. Liu, W. Chen, H.-B. Zhang, L.X. Ye, Z.G. Wang et al., Super-tough and environmentally stable aramid nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14, 111 (2022).

    [45] X.Y. Yue, Y.Y. Jia, X.Z. Wang, K.K. Zhou, W. Zhai et al., Highly stretchable and durable fiber-shaped strain sensor with porous core-sheath structure for human motion monitoring. Compos. Sci. Technol. 189, 108038 (2020).

    [46] J.Z. Huang, J.Y. Li, X.X. Xu, L. Hua, Z.Q. Lu, In situ loading of polypyrrole onto aramid nanofiber and carbon nanotube aerogel fibers as physiology and motion sensors. ACS Nano 16(5), 8161–8171 (2022).

    [47] Y.H. Hu, G. Yang, J.T. Zhou, H.Y. Li, L. Shi et al., Proton donor-regulated mechanically robust aramid nanofiber aerogel membranes for high-temperature thermal insulation. ACS Nano 16(4), 5984–5993 (2022).

    [48] Y.Z. Li, X.T. Zhang, Electrically conductive, optically responsive, and highly orientated Ti3C2Tx MXene aerogel fibers. Adv. Funct. Mater. (2021).

    [49] G. Yin, Y. Wang, W. Wang, Z.J. Qu, D. Yu, A flexible electromagnetic interference shielding fabric prepared by construction of PANI/MXene conductive network via layer-by-layer assembly. Adv. Mater. Interfaces 8, 2001893 (2021).

    [50] B.C. Cheng, P.Y. Wu, Scalable fabrication of Kevlar/Ti3C2Tx MXene intelligent wearable fabrics with multiple sensory capabilities. ACS Nano 15(5), 8676–8685 (2021).

    [51] X.P. Liang, H.F. Li, J.X. Dou, Q. Wang, W.Y. He et al., Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics. Adv. Mater. 32, 2000165 (2020).

    [52] Y. Du, X.H. Zhang, J. Wang, Z.W. Liu, K. Zhang et al., Reaction-spun transparent silica aerogel fibers. ACS Nano 14, 11919–11928 (2020).

    [53] Z.Q. Wang, H.W. Yang, Y. Li, X.H. Zheng, Robust silk fibroin/graphene oxide aerogel fiber for radiative heating textiles. ACS Appl. Mater. Interfaces 12, 15726–15736 (2020).

    [54] W.Y. Wei, Y.P.Q. Yi, J. Song, X.G. Chen, J.H. Li et al., Tunable graphene/nitrocellulose temperature alarm sensors. ACS Appl. Mater. Interfaces 14, 13790–13800 (2022).

    [55] L. Zhang, Y.B. Huang, H.R. Dong, R.Z. Xu, S.H. Jiang, Flame-retardant shape memory polyurethane/MXene paper and the application for early fire alarm sensor. Compos. B Eng. 223, 109149 (2021).

    [56] L. Chen, H.-B. Zhao, Y.-P. Ni, T. Fu, W.-S. Wu et al., 3D printable robust shape memory PET copolyesters with fire safety via π-stacking and synergistic crosslinking. J. Mater. Chem. A 7, 17037–17045 (2019).

    Hualing He, Yi Qin, Zhenyu Zhu, Qing Jiang, Shengnan Ouyang, Yuhang Wan, Xueru Qu, Jie Xu, Zhicai Yu. Temperature-Arousing Self-Powered Fire Warning E-Textile Based on p–n Segment Coaxial Aerogel Fibers for Active Fire Protection in Firefighting Clothing[J]. Nano-Micro Letters, 2023, 15(1): 226
    Download Citation