• High Power Laser and Particle Beams
  • Vol. 33, Issue 12, 123001 (2021)
Feng Qin1、2、3, Yuan Gao1、2、*, and Hongge Ma1、2、3
Author Affiliations
  • 1Institute of Applied Electronics, CAEP, Mianyang 621999, China
  • 2Key Laboratory of Science and Technology on Complex Electromagnetic Environment, CAEP, Mianyang 621999, China
  • 3Science and Technology on High Power Microwave Laboratory, Mianyang 621999, China
  • show less
    DOI: 10.11884/HPLPB202133.210482 Cite this Article
    Feng Qin, Yuan Gao, Hongge Ma. Progress and prospect of high-confidence measurement technology for high-intensity electromagnetic pulse[J]. High Power Laser and Particle Beams, 2021, 33(12): 123001 Copy Citation Text show less
    References

    [7] Zhang Guangxing. Research on test system of the doubleexponential nanosecond pulsed Efield[D]. Nanjing: Southeast University, 2016

    [13] Aur J F. Measurements of transient electromagic propagation through concrete s[R]. Albuquerque: Sia National Lab. , 1996.

    [14] Bigelow W S, Farr E G, Bowen L H, et al. Design acterization of a lens TEM hn[M]Sabath F, Mokole E L, Schenk U, et al. UltraWideb, ShtPulse Electromagics 7. New Yk: Springer, 2007.

    [15] Bigelow W S, Farr E G. Impulse propagation measurements of the dielectric properties of several polymer resins[R]. Measurement Notes, Note 55, 1999.

    [16] Masterson K D, Ka M. Broadb, photonic electric field senss f EMP HPM applications[C]Proceedings of the Fifth National Conference on High Power Microwave Technology (DoD). 1990.

    [23] (GJB 82212014, The method of power measurement f sht high power microwave pulse of outdo range[S]

    [24] (GJB 92572017, Test method f high power microwave effects – Narrow b high power microwave radiation method[S]

    [25] (GJB 93822018, The method of power measurement f narrow b high power microwave[S]

    [26] (GJB 70522010, Methods of measure the frequency spectrum acteristics of sht high power microwave pulse[S]

    [27] (GJB 82182204, Measure method f the high power ultra wide b pulse radiation field[S]

    [33] Yue Zhenzhen. Design of a broadb doubleridged hn antenna[D]. Xi’an: Xidian University, 2017

    [34] Zhang Xiaoming. Development of a transient electric field sens[D]. Beijing: Tsinghua University, 2011

    [36] Wang Yue. Development testing of transient electric field time domain test sens[D]. Nanjing: Southeast University, 2019

    [37] Baum C E. An equivalentge method f defining geometries of dipole antennas[R]. Sens Simulation Notes, Note 72, 1969.

    [38] Sower G D. Optimization of the asymptotic conical dipole EMP senss[R]. Sens Simulation Notes, Note 295, 1986.

    [42] Fan Shoutao, Yin Yingzeng, Wang Yaozhao, et al. Multib printed monopole antenna f WLAN applications[C]Proceedings of 2009 National Conference Antenna. 2009: 129132

    [48] Zhang G G, Li W F, Qi L, et al. Design of wideband GHz electric field sensor integrated with optical fiber transmission link for electromagnetic pulse signal measurement[J]. Sensors, 18, 3167(2018).

    [52] Kanda M, Driver L D. An isotropic electric-field probe with tapered resistive dipoles for broad-band use, 100kHz to 18GHz[J]. IEEE Transactions on Microwave Theory and Techniques, 35, 124-130(1987).

    [53] Ra J, Ka M, r R D. Resistivelytapereddipole electricfield probes up to 40 GHz[C]Proceedings of the IEEE 1991 International Symposium on Electromagic Compatibility. Cherry Hill, 1991: 265266.

    [54] Harasztosi Z. High frequency Efield probe[C]Proceedings of the 24th International Spring Seminar on Electronics Technology. Concurrent Engineering in Electronic Packaging. ISSE 2001. Conference Proceedings (Cat. No. 01EX492). CalimanestiCaciulata, 2001: 172174.

    [55] Bulmer C H, Burns W K, Moeller R P. Linear interferometric waveguide modulator for electromagnetic-field detection[J]. Optics Letters, 5, 176-178(1980).

    [56] Meier T, Kostrzewa C, Petermann K, et al. Integrated optical E-field probes with segmented modulator electrodes[J]. Journal of Lightwave Technology, 12, 1497-1503(1994).

    [58] Zeng R, Chen W Y, He J L, et al. Novel integrated electrooptic sens f intensive transient electric field measurement[C]Proceedings of the IEEE International Symposium on Electromagic Compatibility 2006. 2006.

    [59] Sun B, Chen F S, Chen K X, et al. Integrated optical electric field sensor from 10 kHz to 18 GHz[J]. IEEE Photonics Technology Letters, 24, 1106-1108(2012).

    [60] Tajima K, Kobayashi R, kuwabara N, et al. Development of optical isotropic E-field sensor operating more than 10 GHz using Mach-Zehnder interferometers[J]. IEICE Transactions on Electronics, E85-C, 961-968(2002).

    [61] Sun Bao. Study of broadb integrated optical waveguide RF omnidirectional electric field sens[D]. Chengdu: University of Electronic Science Technology of China, 2006

    [63] Xiao P, Du P A, Zhang B X. An analytical method for radiated electromagnetic and shielding effectiveness of braided coaxial cable[J]. IEEE Transactions on Electromagnetic Compatibility, 61, 121-127(2019).

    [66] Ekstrom M P. Baseband distortion equalization in the transmission of pulse information[J]. IEEE Transactions on Instrumentation and Measurement, 21, 510-515(1972).

    [70] Peterson R L. Frequency domain compensation of coaxial cables f best time domain response[R]. Liverme: Lawrence Radiation Lab. , 1966.

    [73] Sarkar T K, Tseng F I, Rao S M, et al. Deconvolution of impulse response from time-limited input and output: theory and experiment[J]. IEEE Transactions on Instrumentation and Measurement, IM-34, 541-546(1985).

    [74] Boyer W B. Computer compensation f cable signal degradations[R]. Albuquerque: Sia National Labs. , 1987.

    [78] Gao Y, Jiang Y S, Qin F, et al. Optimal choice of signal compensation in coaxial cable: modified non-negative Tikhonov regularization method within Bayesian frame[J]. Measurement, 174, 109072(2021).

    [82] Shashkin V I, Vaks V L, Danil'tsev V M, et al. Microwave detectors based on low-barrier planar Schottky diodes and their characteristics[J]. Radiophysics and Quantum Electronics, 48, 485-490(2005).

    [86] Bera S C, Singh R V, Garg V K. Temperature behaviour and compensation of Schottky barrier diode[J]. International Journal of Electronics, 95, 457-465(2008).

    [89] Wang Jianzhong, Wei Xiangwen. Research on measurement technology of detects with wide frequency range high voltage sensitivity[R]. China Defense Science Technology Rept, GFA0094409G

    [90] Xu Fukai. Study on wideb CW & repeatedly operating HPM source without guiding field[D]. Beijing: China Academy of Engineering Physics, 2003

    [92] Ginzburg N S, Rozental R M, Sergeev A S. Dual b operation of the relativistic BWO[C]Proceedings of the 4th IEEE International Conference on Vacuum Electronics, 2003. New Yk: IEEE, 2003: 181182.

    [103] Uslenghi P L, Erricolo D, Yang H Y D. Analysis design of ultra wideb highpower microwave pulse interactions with electronic circuits systems[R]. US, 2007.

    [104] Belanich J, Buckley L, Cartier J, et al. DoD''s multidisciplinary university research initiative (MURI) program: impact highlights from 25 years of basic research[R]. IDA Document D5361, Institute f Defense Analyses, 2017.

    CLP Journals

    [1] Jingqi Zhang, Feng Qin, Yuan Gao, Shouhong Zhong, Zhen Wang. Design and experiment of wideband electromagnetic pulse protection circuit with effective suppression capability[J]. High Power Laser and Particle Beams, 2023, 35(2): 023004

    Feng Qin, Yuan Gao, Hongge Ma. Progress and prospect of high-confidence measurement technology for high-intensity electromagnetic pulse[J]. High Power Laser and Particle Beams, 2021, 33(12): 123001
    Download Citation