[2] ASSAAD J J. Correlating thixotropy of self-consolidating concrete to ctability, formwork pressure, and multilayer casting[J]. J Mater Civ Eng, 2016, 28(10): 4016107.
[3] HAN J, YAN P. Influence of segregation on the permeability of self-consolidating concrete[J]. Constr Build Mater, 2021, 269: 121277.
[4] BUSWELL R A, Silva D A, Leal W R, BOS F P, et al. A process classification framework for defining and describing digital fabrication with concrete[J]. Cem Concr Res, 2020: 134: 106068.
[5] BIRANCHI P, LIM J, TAN M. Mechanical properties and deformation behaviour of early age concrete in the context of digital construction[J]. Compos Part B: Eng, 2019, 165: 563-571.
[6] TIMOTHY W, ROUSSEL, BOS F P, et al. Digital concrete: A review[J]. Cem Concr Res, 2019, 123: 105780.
[7] GEERT D S, LESAGE K, MECHTCHERINE V, et al. Vision of 3D printing with concrete - Technical, economic and environmental potentials[J]. Cem Concr Res, 2018, 112: 25-36
[8] ATCIN P C, FLATT R J. Science and Technology of Concrete Admixtures[M]. Elsevier Science, 2015.
[9] LI Zhuguo, CAO Guodong. Rheological behaviors and model of fresh concrete in vibrated state[J]. Cem Concr Res, 2019, 120: 217-226.
[11] AUSTIN S A, GOODIER C I, ROBINS P J. Low-volume wet-process sprayed concrete: Pumping and spraying[J]. Mater Struct, 2005, 38(2): 229-237.
[12] MELBYE T A, DIMMOCK R H. Modern advances and applications of sprayed concrete[J]. Shotcrete: Engineering Developments, 2020: 7-29.
[13] SECRIERU E, COTARDO D, MECHTCHERINE V, et al. Changes in concrete properties during pumping and formation of lubricating material under pressure[J]. Cem Concr Res, 2018, 108: 129-139.
[14] KOCH J A, CASTANEDA D I, EWOLDT R H, et al. Vibration of fresh concrete understood through the paradigm of granular physics[J]. Cem Concr Res, 2019, 115: 31-42.
[15] TATTERSALL G H, BAKER P H. The effect of vibration on the rheological properties of fresh concrete[J]. Mag Concr Res, 1988, 40(143): 79-89.
[16] HANOTIN C, RICHTER S K D, MICHOT L J, et al. Viscoelasticity of vibrated granular suspensions[J]. J Rheol, 2014, 59(1): 253-273.
[17] PICHLER C, RCK R, LACKNER R. Apparent power-law fluid behavior of vibrated fresh concrete: Engineering argu-ments based on Stokes-type sphere viscometer measurements[J]. J Non-Newton Fluid, 2017, 240: 44-55.
[18] PANG X, CUELLO J W, IVERSON B J. Hydration kinetics modeling of the effect of curing temperature and pressure on the heat evolution of oil well cement[J]. Cem Concr Res, 2013, 54: 69-76.
[19] PANG X, MEYER C, DARBE R, et al. Modeling the effect of curing temperature and pressure on cement hydration kinetics[J]. Aci Mater J, 2013, 110(2): 229-235.
[20] KIM J H, KWON S H, KAWASHIMA S, et al. Rheology of cement paste under high pressure[J]. Cem Concr Compos, 2017, 77: 60-67.
[21] ATCIN P C, MINDESS S. Sustainability of Concrete[M]. Crc Press, 2011.
[22] XIANG Y, XIE Y, LONG G, et al. Hydration phase and pore structure evolution of hardened cement paste at elevated temperature[J]. J Cent South Univ, 2021, 28(6): 1665-1678.
[23] NEHDI M, MARTINI S A. Estimating time and temperature dependent yield stress of cement paste using oscillatory rheology and genetic algorithms[J]. Cem Concr Res, 2009, 39(11): 1007-1016.
[24] NEHDI M, MARTINI S A. Estimating time and temperature dependent yield stress of cement paste using oscillatory rheology and genetic algorithms[J]. Cem Concr Res, 2009, 39(11): 1007-1016.
[25] NEHDI M, MARTINI S A. Effect of temperature on oscillatory shear behavior of ortland cement paste incorporat-ing chemical admixtures[J]. J Mater Civ Eng, 2007, 19(12): 1090-1100.
[26] MA S, KAWASHIMA S. A rheological approach to study the early-age hydration of oil well cement: Effect of temper-ature, pressure and nanoclay[J]. Constr Build Mater, 2019, 215: 119-127.
[27] WU D, FALL M, CAI S J. Coupling temperature, cement hydration and rheological behaviour of fresh cemented paste backfill[J]. Miner Eng, 2013, 42: 76-87.
[28] MA S, YU T, WANG Y, et al. Phase evolution of oil well cements with nano-additive at elevated tempera-ture/pressure[J]. Aci Mater J, 2016, 113(5): 571-578.
[29] PETERS S. The influence of power ultrasound on setting and strength development of cement suspensions[D]. Weimar: Bauhaus-Universitt, 2017.
[30] XIAO Q, LONG G, FENG R, et al. Effect of alternating current field on rheology of fresh cement-based pastes[J]. J Build Eng, 2022, 48: 103771.
[31] BREDENKAMP S, KRUGER K, BREDENKAMP G L. Direct electric curing of concrete[J]. Mag Concr Res, 1993, 45(162): 71-74.
[32] GOUDJIL N, DJELAL C, VANHOVE Y, et al. Impact of temperature on the demoulding of concrete elements with a polar-ization process[J]. Constr Build Mater, 2014, 54: 402-412.
[33] GOUDJIL N, VANHOVE Y, DJELAL C, et al. Electro-osmosis applied for formwork removal of concrete[J]. J Adv Concr Technol, 2012, 10(9): 301-312.
[34] LIU Y, WANG M, TIAN W, et al. Ohmic heating curing of carbon fiber/carbon nanofiber synergistically strengthening cement-based composites as repair/reinforcement materials used in ultra-low temperature environment[J]. Compos Part A: Appl Sci Manuf, 2019, 125: 105570.
[35] LIU Y, WANG M, WANG W. Ohmic heating curing of electrically conductive carbon nanofiber/cement-based compo-sites to avoid frost damage under severely low temperature[J]. Compos Part A: Appl Sci Manuf, 2018, 115: 236-246.
[36] LIU Y, WANG M, WANG W. Electric induced curing of graphene/cement-based composites for structural strength formation in deep-freeze low temperature[J]. Mater Des, 2018, 160: 783-793.
[38] BUTTRESS A, JONES A, KINGMAN S. Microwave processing of cement and concrete materials-towards an industrial reality?[J]. Cem Concr Res, 2015, 68: 112-123.
[39] MAKUL N, RATTANADECHO P, AGRAWAL D K. Applications of microwave energy in cement and concrete-A review[J]. Renewsust Energy Rev, 2014, 37: 715-733.
[40] LEUNG C K Y, PHEERAPHAN T. Determination of optimal process for microwave curing of concrete[J]. Cem Concr Res, 1997, 27(3): 463-472.
[41] WU X, DONG J, TANG M. Microwave curing technique in concrete manufacture[J]. Cem Concr Res, 1987, 17(2): 205-210.
[42] LEUNG C K Y, PHEERAPHAN T. Microwave curing of Portland cement concrete: experimental results and feasibility for practical applications[J]. Constr Build Mater, 1995, 9(2): 67-73.
[43] MUTHUKRISHNAN S, RAMAKRISHNAN S, SANJAYAN J. Effect of microwave heating on interlayer bonding and buildabil-ity of geopolymer 3D concrete printing[J]. Constr Build Mater, 2020, 265: 120786.
[44] BOUKENDAKDJI O, KADRI E, KENAI S. Effects of granulated blast furnace slag and superplasticizer type on the fresh properties and compressive strength of self-compacting concrete[J]. Cem Concr Compos, 2012, 34(4): 583-590.
[45] ZHANG J, GAO X, YU L. Improvement of viscosity-modifying agents on air-void system of vibrated concrete[J]. Constr Build Mater, 2020, 239: 117843.
[46] JIAO D, El Cheikh K, SHI C, et al. Structural build-up of cementitious paste with nano-Fe3O4 under time-varying magnetic fields[J]. Cem Concr Res, 2019, 124: 105857.
[47] NAIR S D, FERRON R D. Set-on-demand concrete[J]. Cem Concr Res, 2014, 57: 13-27.
[48] SU N, WU C. Effect of magnetic field treated water on mortar and concrete containing fly ash[J]. Cem Concr Compos, 2003, 25(7): 681-688.
[49] SOTO-BERNAL J J, GONZALEZ-MOTA R, ROSALES- CANDELAS I, et al. Effects of static magnetic fields on the physical, me-chanical, and microstructural properties of cement pastes[J]. Adv Mater Sci Eng, 2015, 2015(2): 1-9.
[50] CHEN J, WANG J, JIN W. Study of magnetically driven concrete[J]. Constr Build Mater, 2016, 121: 53-59.
[51] ABAVISANI I, REZAIFAR O, KHEYRODDIN A. Alternating magnetic field effect on fine-aggregate steel chip-rein-forced concrete properties[J]. J Mater Civ Eng, 2018, 6(30): 04018087.
[52] ABAVISANI I, REZAIFAR O, KHEYRODDIN A. Alternating magnetic field effect on fine-aggregate concrete compressive strength[J]. Constr Build Mater, 2017, 134: 83-90.
[53] NAIR S D, FERRON R D. Real time control of fresh cement paste stiffening: Smart cement-based materials via a mag-netorheological approach[J]. Rheol Acta, 2016, 55(7): 571-579.
[54] NAIR S D. Adaptive Performance of Cement-based Materials Using a Magnetorheological Approach[D]. The University of Texas at Austin, 2013.
[55] JIAO D, LESAGE K, YARDIMCI M Y, et al. Rheological properties of cement paste with nano-Fe3O4 under magnetic field: Flow curve and nanoparticle agglomeration[J]. Materials, 2020, 13(22): 5164.
[56] JIAO D, LESAGE K, YARDIMCI M Y, et al. Quantitative assessment of the influence of external magnetic field on clus-tering of nano-Fe3O4 particles in cementitious paste[J]. Cem Concr Res, 2021, 142: 106345.
[57] JIAO D, LESAGE K, YARDIMCI M Y, et al. Structural evolution of cement paste with nano-Fe3O4 under magnetic field-Effect of concentration and particle size of nano-Fe3O4[J]. Cem Concr Compos, 2021, 120: 104036.
[58] JIAO D, LESAGE K, YARDIMCI M Y, et al. Rheological behavior of cement paste with nano-Fe3O4 under magnetic field: Magneto-rheological responses and conceptual calculations[J]. Cem Concr Compos, 2021, 120: 104035.
[59] SURYANTO B, MCCARTER W J, STARRS G, et al. Electrochemical immittance spectroscopy applied to a hybrid PVA/steel fiber engineered cementitious composite[J]. Mater Des, 2016, 105: 179-189.
[60] LEE H, PARK S, CHO S, et al. Correlation analysis of heating performance and electrical energy of multi-walled car-bon nanotubes cementitious composites at sub-zero temperatures[J]. Compos Struct, 2020, 238: 111977.
[61] KOVTUN M, ZIOLKOWSKI M, SHEKHOVTSOVA J, et al. Direct electric curing of alkali-activated fly ash concretes: A tool for wider utilization of fly ashes[J]. J Clean Prod, 2016, 133: 220-227.
[62] WADHWA S S, SRIVASTAVA L K, GAUTAM D K, et al. Direct electric curing of in-situ concrete[J]. Build Res Inf, 1987, 20(2): 97-101.
[69] PILLA A A, MUEHSAM D J, MARKOV M S. A dynamical systems/Larmor precession model for weak magnetic field bioeffects: Ion binding and orientation of bound water molecules[J]. Bioelectrochem Bioenerg, 1997, 43(2): 239-249.
[70] LUNDAGER M H E. Crystallization of calcium carbonate in magnetic field in ordinary and heavy water[J]. J Cryst Growth, 2004, 267(1/2): 251-255.
[71] UYEDA C, KANO S, HISAYOSHI K, et al. Efficiency of magnetic alignment found in various paramagnetic and dia-magnetic solids detected by simple rotational oscillation of sample in microgravity[J]. Mater Trans, 2007, 48(11): 2893-2897.
[72] RABINOW J. The magnetic fluid clutch[J]. Electri Eng, 1948, 67(12): 1167-1167.
[73] DESHMUKH S S. Development, characterization and applications of magnetorheological fluid based “smart” materials on the macro-to-micro scale[D]. Massachusetts Institute of Technology, 2006.
[74] BICA I, LIU Y D, ChOI H J. Physical characteristics of magnetorheological suspensions and their applications[J]. J Ind Eng Chem, 2013, 19(2): 394-406.
[75] GEN S, PHUL P P. Rheological properties of magnetorheological fluids[J]. Smart Mater Struct, 2002, 11(1): 140.
[76] KHEDKAR Y M, BHAT S, ADARSHA H. A review of magnetorheological fluid damper technology and its applica-tions[J]. Int Rev Mech Eng, 2019, 13(4): 256-264.
[77] KUMAR J S, PAUL P S, RAGHUNATHAN G, et al. A review of challenges and solutions in the preparation and use of magnetorheological fluids[J]. Int J Mech Mater Eng, 2019, 14(1): 1-18.
[78] DE Vicente J, KLINGENBERG D J, HIDALGO-ALVAREZ R. Magnetorheological fluids: A review[J]. Soft Matter, 2011, 7(8): 3701-3710.
[79] ROZYNEK Z, ZACHER T, JANEK M, et al. Electric-field-induced structuring and rheological properties of kaolinite and halloysite[J]. Appl Clay Sci, 2013, 77: 1-9.
[80] IAN HERITAGE F M K A. Thermal acceleration of portland cement concretes using direct electronic curing[J]. ACI Mater J, 2000, 97(1): 37-40.
[81] BARHAM W S, ALBISS B, LATAYFEH O. Influence of magnetic field treated water on the compressive strength and bond strength of concrete containing silica fume[J]. J Build Eng, 2021, 33: 101544.
[83] AHMED H I. Behavior of magnetic concrete incorporated with Egyptian nano alumina[J]. Constr Build Mater, 2017, 150: 404-408.
[84] ZHOU K X, LU G W, ZHOU Q C, et al. Monte Carlo simulation of liquid water in a magnetic field[J]. J Appl Phys, 2000, 88(4): 1802-1805.
[85] AFSHIN H, N M G, KHORSHIDI N. Improving mechanical properties of high strength concrete by magnetic water technology[J]. Sci Iranica Trans A: Civ Eng, 2010, 17(1): 74-79.
[86] KHORSHIDI N, ANSARi M, BAYAT M. An investigation of water magnetization and its influence on some concrete specificities like fluidity and compressive strength[J]. Comput Concr, 2014, 13(5): 649-657.
[87] ESFAHANI A R, REISI M, MOHR B. Magnetized water effect on compressive strength and dosage of superplasticizers and water in self-compacting concrete[J]. J Mater Civ Eng, 2018, 30(3): 4018001-4018008.
[88] GHOLHAKI M, KHEYRODDIN A, HAJFOROUSH M, et al. An investigation on the fresh and hardened properties of self-compacting concrete incorporating magnetic water with various pozzolanic materials[J]. Constr Build Mater, 2018, 158(15): 173-180.
[89] GHORBANI S, GHORBANI S, TAO Z, et al. Effect of magnetized water on foam stability and compressive strength of foam concrete[J]. Constr Build Mater, 2019, 197: 280-290.
[90] KOZISSNIK B, BOHORQUEZ A C, DOBSON J, et al. Magnetic fluid hyperthermia: Advances, challenges, and opportunity[J]. Int J Hyperther, 2013, 29(8): 706-714.
[91] LAURENT S, DUTZ S, HFELI U O, et al. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles[J]. Adv Colloid Interface Sci, 2011, 166(1/2): 8-23.
[92] HE Y B, LASKOWSKI J S, KLEIN B. Particle movement in non-Newtonian slurries: the effect of yield stress on dense medium separation[J]. Chem Eng Sci, 2001, 56(9): 2991-2998.
[93] RANKIN P J, HORVATH A T, KLINGENBERG D J. Magnetorheology in viscoplastic media[J]. Rheol Acta, 1999, 38(5): 471-477.
[95] WILSON J G, GUPTA N K. Equipment for the investigation of the accelerated curing of concrete using direct electrical conduction[J]. Measurement, 2004, 35(3): 243-250.
[96] TIAN W, LIU Y, QI B, et al. Enhanced effect of carbon nanofibers on heating efficiency of conductive cementitious composites under ohmic heating curing[J]. Cem Concr Compos, 2021, 117: 103904.
[97] CECINI D, AUSTIN S A, CAVALARO S, et al. Accelerated electric curing of steel-fibre reinforced concrete[J]. Constr Build Mater, 2018, 189: 192-204.
[98] YANG Z, XIE Y, HE J, et al. Experimental investigation on mechanical strength and microstructure of cement paste by electric curing with different voltage and frequency[J]. Constr Build Mater, 2021, 299: 123615.
[99] TIAN W, LIU Y, WANG M, et al. Performance and economic analyses of low-energy ohmic heating cured sustainable reactive powder concrete with dolomite powder as fine aggregates[J]. J Clean Prod, 2021, 329: 129692.
[100] KIM G M, YANG B J, RYU G U, et al. The electrically conductive carbon nanotube (CNT)/cement composites for accelerated curing and thermal cracking reduction[J]. Compos Struct, 2016, 158: 20-29.
[101] LIU Y, TIAN W, WANG M, et al. Rapid strength formation of on-site carbon fiber reinforced high-performance concrete cured by ohmic heating[J]. Constr Build Mater, 2020, 244: 118344.
[102] FERRNDEZ D, SAIZ P, Morón C, et al. Inductive method for the orientation of steel fibers in recycled mortars[J]. Constr Build Mater, 2019, 222: 243-253.
[103] VILLAR V P, MEDINA N F, HERNNDEZ-OLIVARES F. A model about dynamic parameters through magnetic fields during the alignment of steel fibres reinforcing cementitious composites[J]. Constr Build Mater, 2019, 201: 340-349.
[104] VILLAR V P, MEDINA N F. Alignment of hooked-end fibres in matrices with similar rheological behaviour to cementi-tious composites through homogeneous magnetic fields[J]. Constr Build Mater, 2018, 163: 256-266.
[105] ABAVISANI I, REZAIFAR O, KHEYRODDIN A. Magneto-electric control of scaled-down reinforced concrete beams[J]. Aci Struct J, 2017, 114(1): 233-244.
[106] ABAVISANI I, REZAIFAR O, KHEYRODDIN A. Alternating magnetic field effect on fine-aggregate steel chip-reinforced concrete properties[J]. J Mater Civ Eng, 2018, 30(6): 040180876.
[107] HAJFOROUSH M, KHEYRODDIN A, REZAIFAR O. Investigation of engineering properties of steel fiber reinforced concrete exposed to homogeneous magnetic field[J]. Constr Build Mater, 2020, 252: 119064.
[108] TIAN W, LIU Y, WANG W. Multi-structural evolution of conductive reactive powder concrete manufactured by enhanced ohmic heating curing[J]. Cem Concr Compos, 2021, 123: 104199.
[109] WEST R. P. ZHANG S J, MANDL J. Aligning long steel eibres in fresh concrete[C].//Cement Combinations for Durable Concrete: Proceedings of the International Conference held at the University of Dundee, Scotland, UK on 5-7 July 2005. Thomas Telford Publishing, 2005: 467-476.
[110] WEST R P. Design issues in the alignment of steel fibres in concrete slabs using a magnetic fin[C]//Concrete Floors And Slabs: Proceedings of the International Seminar held at the University of Dundee, Scotland, UK on 5-6 September 2002. Thomas Telford Publishing, 2002: 35-44.
[111] WIJFFELS M J H, WOLFS R J M, SUIKER A S J, et al. Magnetic orientation of steel fibres in self-compacting concrete beams: Effect on failure behaviour[J]. Cem Concr Compos, 2017, 80: 342-355.