• NUCLEAR TECHNIQUES
  • Vol. 47, Issue 3, 030501 (2024)
Kaijun LUO1, Wenru FAN1, Yun YUAN1,*, Wei QI2,**..., Jingli ZHANG1, Xiaohui ZHANG2, Zhigang DENG2 and Wen LUO1|Show fewer author(s)
Author Affiliations
  • 1College of Nuclear Science and Technology, University of South China, Hengyang 421001, China
  • 2Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
  • show less
    DOI: 10.11889/j.0253-3219.2024.hjs.47.030501 Cite this Article
    Kaijun LUO, Wenru FAN, Yun YUAN, Wei QI, Jingli ZHANG, Xiaohui ZHANG, Zhigang DENG, Wen LUO. Efficient excitation of nuclear isomer 152mEu using a bremsstrahlung radiation source generated by laser plasma[J]. NUCLEAR TECHNIQUES, 2024, 47(3): 030501 Copy Citation Text show less
    References

    [1] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).

    [2] Mourou G A, Tajima T, Bulanov S V. Optics in the relativistic regime[J]. Reviews of Modern Physics, 78, 309-371(2006).

    [3] MA Yugang. Effects of α-clustering structure on nuclear reaction and relativistic heavy-ion collisions[J]. Nuclear Techniques, 46, 080001(2023).

    [4] WANG Naiyan. Nuclear laser physics[J]. Physics, 37, 621-624(2008).

    [5] Filippi L, Chiaravalloti A, Schillaci O et al. Theranostic approaches in nuclear medicine: current status and future prospects[J]. Expert Review of Medical Devices, 17, 331-343(2020).

    [6] Lindenberg L, Choyke P, Dahut W. Prostate cancer imaging with novel PET tracers[J]. Current Urology Reports, 17, 18(2016).

    [7] Pan W T, Song T, Lan H Y et al. Photo-excitation production of medically interesting isomers using intense γ-ray source[J]. Applied Radiation and Isotopes, 168, 109534(2021).

    [8] Xu Z H, Jin Z G, Tang X B et al. Designing performance enhanced nuclear battery based on the Cd-109 radioactive source[J]. International Journal of Energy Research, 44, 508-517(2020).

    [9] Prelas M A, Weaver C L, Watermann M L et al. A review of nuclear batteries[J]. Progress in Nuclear Energy, 75, 117-148(2014).

    [10] Ulmen B, Desai P D, Moghaddam S et al. Development of diode junction nuclear battery using 63Ni[J]. Journal of Radioanalytical and Nuclear Chemistry, 282, 601-604(2009).

    [11] Masuda T, Yoshimi A, Fujieda A et al. X-ray pumping of the 229Th nuclear clock isomer[J]. Nature, 573, 238-242(2019).

    [12] Seiferle B, von der Wense L, Bilous P V et al. Energy of the 229Th nuclear clock transition[J]. Nature, 573, 243-246(2019).

    [13] CHEN Yinji, ZHANG Liyong. Examining the fluorine overabundance problem by conducting Jinping deep underground experiment[J]. Nuclear Techniques, 46, 110501(2023).

    [14] LI Jiayinghao, LI Yunju, LI Zhihong et al. Nuclear astrophysics research based on HI-13 tandem accelerator[J]. Nuclear Techniques, 46, 080002(2023).

    [15] Rivlin L A, Zadernovsky A A. Nuclear gamma-ray laser: a comparative analysis of various schemes[J]. Laser Physics, 20, 971-976(2010).

    [16] Misch G W, Sprouse T M, Mumpower M R. Astromers in the radioactive decay of r-process nuclei[J]. The Astrophysical Journal Letters, 913, L2(2021).

    [17] Misch G W, Ghorui S K, Banerjee P et al. Astromers: nuclear isomers in astrophysics[J]. The Astrophysical Journal Supplement Series, 252, 2(2020).

    [18] XUE Han, MA Yugang, WANG Hongwei et al. Model calculation and analysis of 151Eu neutron capture cross section contributed by isomeric state of 152Eu[J]. Nuclear Techniques, 41, 110503(2018).

    [19] Lambert D L. The p-nuclei: abundances and origins[J]. The Astronomy and Astrophysics Review, 3, 201-256(1992).

    [20] Stewart N M, Eid E, El-Daghmah M S S et al. Levels in 152Gd and 152Sm populated by the decay of 152Eu[J]. Zeitschrift Für Physik A Atomic Nuclei, 335, 13-23(1990).

    [21] Riedinger L L, Johnson N R, Hamilton J H. Studies of the radioactive decays of 152Eu and 154Eu[J]. Physical Review C, 2, 2358-2379(1970).

    [22] Sharma A K, Kaur R, Verma H R et al. Precision energy and intensity measurements in 152Sm, 152Gd and 154Gd[J]. Journal of the Physical Society of Japan, 48, 1407-1414(1980).

    [23] Yoshizawa Y, Iwata Y, Iinuma Y. Precision measurements of gamma-ray intensities. II. 152Eu, 154Eu and 192Ir[J]. Nuclear Instruments and Methods, 174, 133-139(1980).

    [24] Debertin K. International intercomparison of gamma-ray emission-rate measurements by means of germanium spectrometers and 152Eu sources[J]. Nuclear Instruments and Methods, 158, 479-486(1979).

    [25] Meyer R A. Lawrence Livermore Laboratory[J]. M-100(1978).

    [26] Gehrke R J, Helmer R G, Greenwood R C. Precise relative γ-ray intensities for calibration of Ge semiconductor detectors[J]. Nuclear Instruments and Methods, 147, 405-423(1977).

    [27] Debertin K, Schötzig U, Weiss H M. Calibration of the gamma ray efficiency of Ge(Li) spectrometers with 152Eu[J]. PTB Mitteilungen, 85, 187-195(1975).

    [28] Baker K R, Hamilton J H, Ramayya A V. Detailed Ge(Li)-Ge(Li) coincidence studies of levels in 152Sm and 152Gd[J]. Zeitschrift Für Physik, 256, 387-415(1972).

    [29] Danilenko V N, Gromova N P, Konstantinov A A et al. Methods of producing radionuclides for spectrometric gamma-ray sources and their standardization: 2. Europium-152[J]. International Journal of Radiation Applications and Instrumentation Part A, Applied Radiation and Isotopes, 40, 711-713(1989).

    [30] Allison J, Amako K, Apostolakis J et al. Recent developments in GEANT4[J]. Nuclear Instruments & Methods In Physics Research Section A, 835, 186-225(2016).

    [31] Agostinelli S, Allison J, Amako K et al. GEANT4—a simulation toolkit[J]. Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506, 250-303(2003).

    [32] Luo W, Lan H Y, Xu Y et al. Implementation of the n-body Monte-Carlo event generator into the Geant4 toolkit for photonuclear studies[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 849, 49-54(2017).

    [33] Koning A J, Rochman D, Sublet J C et al. TENDL: complete nuclear data library for innovative nuclear science and technology[J]. Nuclear Data Sheets, 155, 1-55(2019).

    [35] Günther M M, Rosmej O N, Tavana P et al. Forward-looking insights in laser-generated ultra-intense γ-ray and neutron sources for nuclear application and science[J]. Nature Communications, 13, 170(2022).

    [36] Fan W R, Qi W, Zhang J L et al. Efficient production of the nuclear isomer 93mMo with laser-accelerated proton beam and its astrophysical implication on 92Mo production[J]. Physical Review Research, 5, 043120(2023).

    [37] Vandenbosch R, Huizenga J. Isomeric cross-section ratios for reactions producing the isomeric pair Hg197, 197m[J]. Physical Review, 120, 1313-1318(1960).

    [38] Huizenga J R, Vandenbosch R. Interpretation of isomeric cross-section ratios for (n, γ) and (γ, n) reactions[J]. Physical Review, 120, 1305-1312(1960).

    [39] Zhang J L, Qi W, Fan W R et al. Study of the isomeric yield ratio in the photoneutron reaction of natural holmium induced by laser-accelerated electron beams[J]. Frontiers in Astronomy and Space Sciences, 10, 1265919(2023).

    Kaijun LUO, Wenru FAN, Yun YUAN, Wei QI, Jingli ZHANG, Xiaohui ZHANG, Zhigang DENG, Wen LUO. Efficient excitation of nuclear isomer 152mEu using a bremsstrahlung radiation source generated by laser plasma[J]. NUCLEAR TECHNIQUES, 2024, 47(3): 030501
    Download Citation