• High Power Laser Science and Engineering
  • Vol. 8, Issue 3, 03000e28 (2020)
Lei Xia1、2, Yuanzhang Hu1, Wenyu Chen1, and Xiaoguang Li1、*
Author Affiliations
  • 1Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
  • 2Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • show less
    DOI: 10.1017/hpl.2020.29 Cite this Article Set citation alerts
    Lei Xia, Yuanzhang Hu, Wenyu Chen, Xiaoguang Li. Decoupling of the position and angular errors in laser pointing with a neural network method[J]. High Power Laser Science and Engineering, 2020, 8(3): 03000e28 Copy Citation Text show less
    Prototype laser-pointing system. S is the laser source; L is the thin lens; M is the spot image on the CCD; T is the beam tilt of the waist center on the source plane; a0, θx are the position offset and inclination angle of the beam relative to the optical axis in the x direction, respectively, and b0, θy are those in the y direction; u is the distance between the source plane and the lens; f is the focal length; δz is the defocus distance of the CCD. The optical axis of the system is along the z direction.
    Fig. 1. Prototype laser-pointing system. S is the laser source; L is the thin lens; M is the spot image on the CCD; T is the beam tilt of the waist center on the source plane; a0, θx are the position offset and inclination angle of the beam relative to the optical axis in the x direction, respectively, and b0, θy are those in the y direction; u is the distance between the source plane and the lens; f is the focal length; δz is the defocus distance of the CCD. The optical axis of the system is along the z direction.
    Prediction errors Ej for all epochs, spot image M2 and image difference for beam tilts in the x direction. (a) and (b) show the prediction errors, the spot image and image difference on the vertical CCD, respectively. (c) and (d) show those on the tilted CCD with a rotation of 60° around the y-axis. (e) and (f) show those on the tilted CCD with a rotation of 60° around the x-axis.
    Fig. 2. Prediction errors Ej for all epochs, spot image M2 and image difference for beam tilts in the x direction. (a) and (b) show the prediction errors, the spot image and image difference on the vertical CCD, respectively. (c) and (d) show those on the tilted CCD with a rotation of 60° around the y-axis. (e) and (f) show those on the tilted CCD with a rotation of 60° around the x-axis.
    Prediction performances Emean with different focal lengths f, tilting angles θ and defocus distances δz. (a) and (b) show spot samples and the prediction performance with typical focal lengths f = 40 and 100 mm, respectively. The partially enlarged plot in the dotted rectangle represents the prediction results for θ = 60°. (c) and (d) show the prediction performance when the tilting angles are 45° and 60°, respectively.
    Fig. 3. Prediction performances Emean with different focal lengths f, tilting angles θ and defocus distances δz. (a) and (b) show spot samples and the prediction performance with typical focal lengths f = 40 and 100 mm, respectively. The partially enlarged plot in the dotted rectangle represents the prediction results for θ = 60°. (c) and (d) show the prediction performance when the tilting angles are 45° and 60°, respectively.
    Lei Xia, Yuanzhang Hu, Wenyu Chen, Xiaoguang Li. Decoupling of the position and angular errors in laser pointing with a neural network method[J]. High Power Laser Science and Engineering, 2020, 8(3): 03000e28
    Download Citation