• Acta Photonica Sinica
  • Vol. 50, Issue 11, 1123001 (2021)
Yuan ZHOU1,2, Runze LI1, Xianghua YU1,*, Shaohui YAN1..., Xing LI1,2, Wenyu GAO1,2, Chao LIU1,2, Tong PENG1, Yanlong YANG1, Junwei MIN1, Ping WANG1,3, Jun QU4 and Baoli YAO1,2,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Transient Optics and Photonics,Xi'an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi'an 710119,China
  • 2University of Chinese Academy of Sciences,Beijing 100049,China
  • 3Key Laboratory of Biomedical Information Engineering of Ministry of Education,Institute of Biomedical Photonics and Sensing,School of Life Science and Technology,Xi'an Jiaotong University,Xi'an 710049,China
  • 4School of Physics and Electronic Information,Anhui Normal University,Wuhu,Anhui 241002,China
  • show less
    DOI: 10.3788/gzxb20215011.1123001 Cite this Article
    Yuan ZHOU, Runze LI, Xianghua YU, Shaohui YAN, Xing LI, Wenyu GAO, Chao LIU, Tong PENG, Yanlong YANG, Junwei MIN, Ping WANG, Jun QU, Baoli YAO. Progress in Study and Application of Optical Field Modulation Technology Based on Liquid Crystal Spatial Light Modulators(Invited)[J]. Acta Photonica Sinica, 2021, 50(11): 1123001 Copy Citation Text show less
    References

    [1] H RUBINSZTEIN-DUNLOP, A FORBES, M V BERRY et al. Roadmap on structured light. Journal of Optics, 19, 013001(2017).

    [2] D MCGLOIN, K DHOLAKIA. Bessel beams: Diffraction in a new light. Contemporary Physics, 46, 15-28(2005).

    [3] F GORI, G GUATTARI, C PADOVANI. Bessel-Gauss beams. Optics Communications, 64, 491-495(1987).

    [4] G A SIVILOGLOU, J BROKY, A DOGARIU et al. Observation of accelerating Airy beams. Physical Review Letters, 99, 213901(2007).

    [5] B K SINGH, R REMEZ, Y TSUR et al. Super-Airy beam: self-accelerating beam with intensified main lobe. Optics Letters, 40, 4703-4706(2015).

    [6] N K EFREMIDIS, Z CHEN, M SEGEV et al. Airy beams and accelerating waves: an overview of recent advances. Optica, 6, 686-701(2019).

    [7] Sheng LIU, Shuxia QI, Yi ZHANG et al. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude. Photonics Research, 6, 228-233(2018).

    [8] V GARCES-CHAVEZ, D MCGLOIN, H MELVILLE et al. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature, 419, 145-147(2002).

    [9] Kangzhu ZHOU, Shangling HE, Shihan HONG et al. Spontaneous-focusing and self-healing of Airy-like beams. Results in Physics, 19, 103526(2020).

    [10] R DORN, S QUABIS, G LEUCHS. Sharper focus for a radially polarized light beam. Physical Review Letters, 91, 233901(2003).

    [11] Shenhe FU, Chaoheng GUO, Guohua LIU et al. Spin-orbit optical hall effect. Physical Review Letters, 123, 243904(2019).

    [12] Xianghua YU, Chao LIU, Chen BAI et al. Progress in light-sheet fluorescence microscopy and application. Laser & Optoelectronics Progress, 57, 9-23(2020).

    [13] Y KOZAWA, D MATSUNAGA, S SATO. Superresolution imaging via superoscillation focusing of a radially polarized beam. Optica, 5, 86-92(2018).

    [14] C MAURER, A JESACHER, S BERNET et al. What spatial light modulators can do for optical microscopy. Laser & Photonics Reviews, 5, 81-101(2011).

    [15] D G GRIER. A revolution in optical manipulation. Nature, 424, 810-816(2003).

    [16] M WOERDEMANN, C ALPMANN, M ESSELING et al. Advanced optical trapping by complex beam shaping. Laser & Photonics Reviews, 7, 839-854(2013).

    [17] Yansheng LIANG, Shaohui YAN, Zhaojun WANG et al. Simultaneous optical trapping and imaging in the axial plane: a review of current progress. Reports on Progress in Physics, 83, 032401(2020).

    [18] Mengqiang CAI, Pingping LI, Dan FENG et al. Microstructures fabricated by dynamically controlled femtosecond patterned vector optical fields. Optics Letters, 41, 1474-1477(2016).

    [19] Mingcong XIAN, Yi XU, Xu OUYANG et al. Segmented cylindrical vector beams for massively-encoded optical data storage. Science Bulletin, 65, 2072-2079(2020).

    [20] Yifan ZHAO, Jian WANG. High-base vector beam encoding/decoding for visible-light communications. Optics Letters, 40, 4843-4846(2015).

    [21] Yijie PAN, Juan LIU, Xin LI et al. A review of dynamic holographic three-dimensional display: algorithms, devices, and systems. IEEE Transactions on Industrial Informatics, 12, 1599-1610(2016).

    [22] Qiang JIANG, Guofan JIN, Liangcai CAO. When metasurface meets hologram: principle and advances. Advances in Optics and Photonics, 11, 518-576(2019).

    [23] A FORBES, A DUDLEY, M MCLAREN. Creation and detection of optical modes with spatial light modulators. Advances in Optics and Photonics, 8, 200-227(2016).

    [24] J A DAVIS, D M COTTRELL, J CAMPOS et al. Encoding amplitude information onto phase-only filters. Applied Optics, 38, 5004-5013(1999).

    [25] J A DAVIS, K O VALADEZ, D M COTTRELL. Encoding amplitude and phase information onto a binary phase-only spatial light modulator. Applied Optics, 42, 2003-2008(2003).

    [26] Hao CHEN, Jingjing HAO, Baifu ZHANG et al. Generation of vector beam with space-variant distribution of both polarization and phase. Optics Letters, 36, 3179-3181(2011).

    [27] Sheng LIU, Peng LI, Tao PENG et al. Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer. Optics Express, 20, 21715-21721(2012).

    [28] M W HYDE. Phase-only implementation of the complex screen technique for generating schell-model sources, 1-6(2016).

    [29] M W HYDE, S BOSE-PILLAI, D G VOELZ et al. Generation of vector partially coherent optical sources using phase-only spatial light modulators. Physical Review Applied, 6, 064030(2016).

    [30] D GABOR. A new microscopic principle. Nature, 161, 777-778(1948).

    [31] E N LEITH, J UPATNIEKS. Wavefront reconstruction with diffused illumination and three-dimensional objects*. Journal of the Optical Society of America, 54, 1295-1301(1964).

    [32] A KOZMA, D L KELLY. Spatial filtering for detection of signals submerged in noise. Applied Optics, 4, 387-392(1965).

    [33] R G DORSCH, A W LOHMANN, S SINZINGER. Fresnel ping-pong algorithm for two-plane computer-generated hologram display. Applied Optics, 33, 869-875(1994).

    [34] T NISHITSUJI, T SHIMOBABA, T KAKUE et al. Review of fast calculation techniques for computer-generated holograms with the point-light-source-based model. IEEE Transactions on Industrial Informatics, 13, 2447-2454(2017).

    [35] Xiaoyu JIN, Jinbin GUI, Chao LIU et al. Progress of fast generation algorithm of computer-generated hologram based on point source model. Laser & Optoelectronics Progress, 55, 100005(2018).

    [36] K MATSUSHIMA, H NISHI, S NAKAHARA. Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography. Journal of Electron Imaging, 21, 023002(2012).

    [37] M BAYRAKTAR, M OZCAN. Method to calculate the far field of three-dimensional objects for computer-generated holography. Applied Optics, 49, 4647-4654(2010).

    [38] R DI LEONARDO, F IANNI, G RUOCCO. Computer generation of optimal holograms for optical trap arrays. Optics Express, 15, 1913-1922(2007).

    [39] R W GERCHBERG, W O SAXTON. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik, 35, 237-246(1972).

    [40] V ARRIZON, U RUIZ, R CARRADA et al. Pixelated phase computer holograms for the accurate encoding of scalar complex fields. Journal of the Optical Society of America A, 24, 3500-3507(2007).

    [41] T G JABBOUR, S M KUEBLER. Vectorial beam shaping. Optics Express, 16, 7203-7213(2008).

    [42] M HOSSEIN EYBPOSH, N W CAIRA, M ATISA et al. DeepCGH: 3D computer-generated holography using deep learning. Optics Express, 28, 26636-26650(2020).

    [43] Han LIN, Baohua JIA, Min GU. Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication. Optics Letters, 36, 406-408(2011).

    [44] Haoran REN, Han LIN, Xiangping LI et al. Three-dimensional parallel recording with a Debye diffraction-limited and aberration-free volumetric multifocal array. Optics Letters, 39, 1621-1624(2014).

    [45] J LIESENER, M REICHERTER, T HAIST et al. Multi-functional optical tweezers using computer-generated holograms. Optics Communications, 185, 77-82(2000).

    [46] J A DAVIS, D M COTTRELL. Random mask encoding of multiplexed phase-only and binary phase-only filters. Optics Letters, 19, 496-498(1994).

    [47] M MONTES-USATEGUI, E PLEGUEZUELOS, J ANDILLA et al. Fast generation of holographic optical tweezers by random mask encoding of Fourier components. Optics Express, 14, 2101-2107(2006).

    [48] Tan XU, Shangquan WU, Zhaoxiang JIANG et al. Regulating trapping energy for multi-object manipulation by random phase encoding. Optics Letters, 45, 2002-2005(2020).

    [49] L B LESEM, P M HIRSCH, J A JORDAN. The kinoform: A new wavefront reconstruction device. IBM Journal of Research and Development, 13, 150-155(1969).

    [50] J E CURTIS, C H SCHMITZ, J P SPATZ. Symmetry dependence of holograms for optical trapping. Optics Letters, 30, 2086-2088(2005).

    [51] H DAMMANN, E KLOTZ. Coherent optical generation and inspection of two-dimensional periodic structures. Optica Acta, 24, 505-515(1977).

    [52] Changhe ZHOU, Liren LIU. Numerical study of Dammann array illuminators. Applied Optics, 34, 5961-5969(1995).

    [53] I MORENO, J A DAVIS, D M COTTRELL et al. Encoding generalized phase functions on Dammann gratings. Optics Letters, 35, 1536-1538(2010).

    [54] Junjie YU, Changhe ZHOU, Wei JIA et al. Three-dimensional Dammann array. Applied Optics, 51, 1619-1630(2012).

    [55] S G GHEBJAGH, D FISCHER, S SINZINGER. Multifocal multi-value phase zone plate for 3D focusing. Applied Optics, 58, 8943-8949(2019).

    [56] R L ERIKSEN, P C MOGENSEN, J GLUCKSTAD. Multiple-beam optical tweezers generated by the generalized phase-contrast method. Optics Letters, 27, 267-269(2002).

    [57] Linwei ZHU, Junjie YU, Dawei ZHANG et al. Multifocal spot array generated by fractional Talbot effect phase-only modulation. Optics Express, 22, 9798-9808(2014).

    [58] Linwei ZHU, Rui YANG, Dawei ZHANG et al. Dynamic three-dimensional multifocal spots in high numerical-aperture objectives. Optics Express, 25, 24756-24766(2017).

    [59] T HAIST, M SCHONLEBER, H J TIZIANI. Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays. Optics Communications, 140, 299-308(1997).

    [60] J E CURTIS, B A KOSS, D G GRIER. Dynamic holographic optical tweezers. Optics Communications, 207, 169-175(2002).

    [61] G SHABTAY. Three-dimensional beam forming and Ewald's surfaces. Optics Communications, 226, 33-37(2003).

    [62] Baiheng MA, Baoli YAO, Ze LI et al. Generation of three-dimensional optical structures by dynamic holograms displayed on a twisted nematic liquid crystal display. Applied Physics B, 110, 531-537(2012).

    [63] E R DUFRESNE, G C SPALDING, M T DEARING et al. Computer-generated holographic optical tweezer arrays. Review of Scientific Instruments, 72, 1810-1816(2001).

    [64] Yue WANG, Yansheng LIANG, Shaohui YAN et al. Axial multi-particle trapping and real-time direct observation. Acta Physica Sinica, 67, 138701(2018).

    [65] B RICHARDS, E WOLF. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 253, 358-379(1959).

    [66] Yanan CAI, Shaohui YAN, Zhaojun WANG et al. Rapid tilted-plane Gerchberg-Saxton algorithm for holographic optical tweezers. Optics Express, 28, 12729-12739(2020).

    [67] E H WALLER, GVON FREYMANN. Multi foci with diffraction limited resolution. Optics Express, 21, 21708-21713(2013).

    [68] D KIM, A KEESLING, A OMRAN et al. Large-scale uniform optical focus array generation with a phase spatial light modulator. Optics Letters, 44, 3178-3181(2019).

    [69] P POZZI, L MADDALENA, N CEFFA et al. Fast calculation of computer generated holograms for 3D photostimulation through Compressive-Sensing Gerchberg-Saxton algorithm. Methods and Protocols, 2, 2(2019).

    [70] Zeyang CHEN, Zhun WEI, Rui CHEN et al. Focus shaping of high numerical aperture lens using physics-assisted artificial neural networks. Optics Express, 29, 13011-13024(2021).

    [71] Long ZHU, Jian WANG. Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators. Scientific Reports, 4, 7441(2014).

    [72] J P KIRK, A L JONES. Phase-only complex-calued spatial filter*. Journal of the Optical Society of America, 61, 1023-1028(1971).

    [73] R W COHN, M LIANG. Approximating fully complex spatial modulation with pseudorandom phase-only modulation. Applied Optics, 33, 4406-4415(1994).

    [74] T ANDO, Y OHTAKE, N MATSUMOTO et al. Mode purities of Laguerre-Gaussian beams generated via complex-amplitude modulation using phase-only spatial light modulators. Optics Letters, 34, 34-36(2009).

    [76] P ALEAHMAD, M A MIRI, M S MILLS et al. Fully vectorial accelerating diffraction-free Helmholtz beams. Physical Review Letters, 109, 203902(2012).

    [77] Xianghua YU, Runze LI, Shaohui YAN et al. Experimental demonstration of 3D accelerating beam arrays. Applied Optics, 55, 3090-3095(2016).

    [78] A JESACHER, C MAURER, A SCHWAIGHOFER et al. Full phase and amplitude control of holographic optical tweezers with high efficiency. Optics Express, 16, 4479-4486(2008).

    [79] D L ANDREWS, Y ROICHMAN, E J GALVEZ et al. Three-dimensional holographic ring traps. Complex Light and Optical Forces(2007).

    [80] S H LEE, Y ROICHMAN, D G GRIER. Optical solenoid beams. Optics Express, 18, 6988-6993(2010).

    [81] E R SHANBLATT, D G GRIER. Extended and knotted optical traps in three dimensions. Optics Express, 19, 5833-5838(2011).

    [82] J A RODRIGO, T ALIEVA, E ABRAMOCHKIN et al. Shaping of light beams along curves in three dimensions. Optics Express, 21, 20544-20555(2013).

    [83] Xionggui TANG, NAN Fan, Zijie YAN. Rapidly and accurately shaping the intensity and phase of light for optical nano-manipulation. Nanoscale Advances, 2, 2540-2547(2020).

    [84] Zhangzhong YUAN, Shaohua TAO. Generation of phase-gradient optical beams with an iterative algorithm. Journal of Optics, 16, 105701(2014).

    [85] Shaohua TAO, Weixing YU. Beam shaping of complex amplitude with separate constraints on the output beam. Optics Express, 23, 1052-1062(2015).

    [86] Liang WU, Shubo CHENG, Shaohua TAO. Simultaneous shaping of amplitude and phase of light in the entire output plane with a phase-only hologram. Scientific Reports, 5, 15426(2015).

    [87] Liang WU, Shubo CHENG, Shaohua TAO. Complex amplitudes reconstructed in multiple output planes with a phase-only hologram. Journal of Optics, 17, 125603(2015).

    [88] J A RODRIGO, T ALIEVA. Polymorphic beams and Nature inspired circuits for optical current. Scientific Reports, 6, 35341(2016).

    [89] Jinwen WANG, F CASTELLUCCI, S FRANKE-ARNOLD. Vectorial light-matter interaction: Exploring spatially structured complex light fields. AVS Quantum Science, 2, 031702(2020).

    [90] Qiwen ZHAN. Cylindrical vector beams: from mathematical concepts to applications. Advances in Optics and Photonics, 1, 1-57(2009).

    [91] Yijie SHEN, Xilin YANG, D NAIDOO et al. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser. Optica, 7, 820-831(2020).

    [92] Xilin WANG, Jianping DING, Weijiang NI et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Optics Letters, 32, 3549-3551(2007).

    [93] Yuan ZHOU, Xing LI, Yanan CAI et al. Compact optical module to generate arbitrary vector vortex beams. Applied Optics, 59, 8932-8938(2020).

    [94] LÜ Jiaqi, Xiaolei WANG, Guanlin ZHANG et al. Bessel-like beams with controllable rotating local linear polarization during propagation. Optics Letters, 45, 1738-1741(2020).

    [95] Zhaozhong CHEN, Tingting ZENG, Binjie QIAN et al. Complete shaping of optical vector beams. Optics Express, 23, 17701-17710(2015).

    [96] Peng LI, Yi ZHANG, Sheng LIU et al. Generation of perfect vectorial vortex beams. Optics Letters, 41, 2205-2208(2016).

    [97] C MAURER, A JESACHER, S FüRHAPTER et al. Tailoring of arbitrary optical vector beams. New Journal of Physics, 9, 78-78(2007).

    [98] Yuan GAO, Zhaozhong CHEN, Jianping DING et al. Single ultra-high-definition spatial light modulator enabling highly efficient generation of fully structured vector beams. Applied Optics, 58(2019).

    [99] Shizhen CHEN, Xinxing ZHOU, Yachao LIU et al. Generation of arbitrary cylindrical vector beams on the higher order Poincaré sphere. Optics Letters, 39, 5274-5276(2014).

    [100] C ROSALES-GUZMAN, N BHEBHE, A FORBES. Simultaneous generation of multiple vector beams on a single SLM. Optics Express, 25, 25697-25706(2017).

    [101] Shiyao FU, Chunqing GAO, Tonglu WANG et al. Simultaneous generation of multiple perfect polarization vortices with selective spatial states in various diffraction orders. Optics Letters, 41, 5454-5457(2016).

    [102] Shiyao FU, Tonglu WANG, Chunqing GAO. Generating perfect polarization vortices through encoding liquid-crystal display devices. Applied Optics, 55, 6501-6505(2016).

    [103] Wei HAN, Yanfang YANG, Wen CHENG et al. Vectorial optical field generator for the creation of arbitrarily complex fields. Optics Express, 21, 20692-20706(2013).

    [104] E J GALVEZ, J GLÜCKSTAD, D L ANDREWS et al. Complex light fields enter a new dimension: holographic modulation of polarization in addition to amplitude and phase. SPIE, 9379, 937908(2015).

    [105] J A DAVIS, I MORENO, K BADHAM et al. Nondiffracting vector beams where the charge and the polarization state vary with propagation distance. Optics Letters, 41, 2270-2273(2016).

    [106] J A DAVIS, D E MCNAMARA, D M COTTRELL et al. Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator. Applied Optics, 39, 1549-1554(2000).

    [107] J C RICKLIN, F M DAVIDSON. Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication. Journal of the Optical Society of America A, 19, 1794-1802(2002).

    [108] F DUBOIS, M L REQUENA, C MINETTI et al. Partial spatial coherence effects in digital holographic microscopy with a laser source. Applied Optics, 43, 1131-1139(2004).

    [109] F DUBOIS, L JOANNES, J C LEGROS. Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence. Applied Optics, 38, 7085-7094(1999).

    [110] Yahong CHEN, Yangjian CAI. Laser coherence modulation and its applications. Acta Optica Sinica, 36, 1026002(2016).

    [111] Yangjian CAI, Yahong CHEN, Fei WANG. Generation and propagation of partially coherent beams with nonconventional correlation functions: a review [invited]. Journal of the Optical Society of America A, 31, 2083-2096(2014).

    [112] Fei WANG, Xianlong LIU, Yangsheng YUAN et al. Experimental generation of partially coherent beams with different complex degrees of coherence. Optics Letters, 38, 1814-1816(2013).

    [113] Yahong CHEN, Fei WANG, Lin LIU et al. Generation and propagation of a partially coherent vector beam with special correlation functions. Physical Review A, 89, 013801(2014).

    [114] IV M W HYDE, S BASU, X XIAO et al. Producing any desired far-field mean irradiance pattern using a partially-coherent Schell-model source. Journal of Optics, 17, 055607(2015).

    [115] M W HYDE, S BASU, D G VOELZ et al. Experimentally generating any desired partially coherent Schell-model source using phase-only control. Journal of Applied Physics, 118, 093102(2015).

    [116] Xi CHEN, Jia LI, S M H RAFSANJANI et al. Synthesis of Im-Bessel correlated beams via coherent modes. Optics Letters, 43, 3590-3593(2018).

    [117] B PEREZ-GARCIA, A YEPIZ, R I HERNANDEZ-ARANDA et al. Digital generation of partially coherent vortex beams. Optics Letters, 41, 3471-3474(2016).

    [118] Chunhao LIANG, Gaofeng WU, Fei WANG et al. Overcoming the classical Rayleigh diffraction limit by controlling two-point correlations of partially coherent light sources. Optics Express, 25, 28352-28362(2017).

    [119] Yahong CHEN, Fei WANG, Chengliang ZHAO et al. Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam. Optics Express, 22, 5826-5838(2014).

    [120] Shijun ZHU, Yahong CHEN, Jing WANG et al. Generation and propagation of a vector cosine-Gaussian correlated beam with radial polarization. Optics Express, 23, 33099-33115(2015).

    [121] D VOELZ, X XIAO, O KOROTKOVA. Numerical modeling of Schell-model beams with arbitrary far-field patterns. Optics Letters, 40, 352-355(2015).

    [122] M W HYDE, S R BOSE-PILLAI, R A WOOD. Synthesis of non-uniformly correlated partially coherent sources using a deformable mirror. Applied Physics Letters, 111, 101106(2017).

    [123] M W HYDE. Partially coherent sources generated from the incoherent sum of fields containing random-width Bessel functions. Optics Letters, 44, 1603-1606(2019).

    [124] Zhenglan ZHOU, Yuan ZHOU, Huafeng XU et al. Research progress of partially coherent beam with special correlation functions. Chinese Journal of Quantum Electronics, 37, 615-632(2020).

    [125] J A RODRIGO, T ALIEVA. Vector polymorphic beam. Scientific Reports, 8, 7698(2018).

    [126] Yanran ZHANG, Chenliang CHANG, Caojin YUAN et al. Composite generation of independently controllable multiple three-dimensional vector focal curve beams. Optics Communications, 450, 296-303(2019).

    [127] Peng LI, Xuyue GUO, Shuxia QI et al. Creation of independently controllable multiple focal spots from segmented Pancharatnam-Berry phases. Scientific Reports, 8, 9831(2018).

    [128] Jiming WANG, Weibin CHEN, Qiwen ZHAN. Engineering of high purity ultra-long optical needle field through reversing the electric dipole array radiation. Optics Express, 18, 21965-21972(2010).

    [129] Jian CHEN, Chenhao WAN, Lingjian KONG et al. Tightly focused optical field with controllable photonic spin orientation. Optics Express, 25, 19517-19528(2017).

    [130] Wei XIN, Qiming ZHANG, Min GU. Inverse design of optical needles with central zero-intensity points by artificial neural networks. Optics Express, 28, 38718-38732(2020).

    [131] Zhaozhong CHEN, Tingting ZENG, Jianping DING. Reverse engineering approach to focus shaping. Optics Letters, 41, 1929-1932(2016).

    [132] Jianjun LUO, Henwen ZHANG, Sicong WANG et al. Three-dimensional magnetization needle arrays with controllable orientation. Optics Letters, 44, 727-730(2019).

    [133] M LEUTENEGGER, R RAO, R A LEITGEB et al. Fast focus field calculations. Optics Express, 14, 11277-11291(2006).

    [134] Jingjing HAO, Zhongliang YU, Zhaozhong CHEN et al. Shaping of focal field with controllable amplitude, phase, and polarization. Chinese Optics Letters, 12, 090501-090505(2014).

    [135] Jingjing HAO, Zhongliang YU, Hao CHEN et al. Light field shaping by tailoring both phase and polarization. Applied Optics, 53, 785-791(2014).

    [136] E R DUFRESNE, D G GRIER. Optical tweezer arrays and optical substrates created with diffractive optics. Review of Scientific Instruments, 69, 1974-1977(1998).

    [137] M REICHERTER, T HAIST, E U WAGEMANN et al. Optical particle trapping with computer-generated holograms written on a liquid-crystal display. Optics Letters, 24, 608-610(1999).

    [138] Y ROICHMAN, B SUN, Y ROICHMAN et al. Optical forces arising from phase gradients. Physical Review Letters, 100, 013602(2008).

    [139] M PADGETT, R BOWMAN. Tweezers with a twist. Nature Photonics, 5, 343-348(2011).

    [140] J NG, Z LIN, C T CHAN. Theory of optical trapping by an optical vortex beam. Physical Review Letters, 104, 103601(2010).

    [141] D COJOC, V GARBIN, E FERRARI et al. Laser trapping and micro-manipulation using optical vortices. Microelectronic Engineering, 78-79, 125-131(2005).

    [142] J A RODRIGO, T ALIEVA. Freestyle 3D laser traps: tools for studying light-driven particle dynamics and beyond. Optica, 2, 812-815(2015).

    [143] J A RODRIGO, M ANGULO, T ALIEVA. Programmable optical transport of particles in knot circuits and networks. Optics Letters, 43, 4244-4247(2018).

    [144] J A RODRIGO, M ANGULO, T ALIEVA. All-optical motion control of metal nanoparticles powered by propulsion forces tailored in 3D trajectories. Photonics Researchearch, 9, 1-12(2020).

    [145] J A RODRIGO, M ANGULO, T ALIEVA. Tailored optical propulsion forces for controlled transport of resonant gold nanoparticles and associated thermal convective fluid flows. Light: Science & Applications, 9, 181(2020).

    [146] Bichang CHEN, W R LEGANT, Kai WANG et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science, 346, 1257998(2014).

    [147] Min GU, Xiangping LI, Yaoyu CAO. Optical storage arrays: a perspective for future big data storage. Light: Science & Applications, 3, e177(2014).

    [148] Yansheng LIANG, Shaohui YAN, Baoli YAO et al. Direct observation and characterization of optical guiding of microparticles by tightly focused non-diffracting beams. Optics Express, 27, 37975-37985(2019).

    [149] Xiaohao XU, M NIETO-VESPERINAS. Azimuthal imaginary poynting momentum density. Physical Review Letters, 123, 233902(2019).

    [150] Shaohui YAN, Manman LI, Yansheng LIANG et al. Spin momentum-dependent orbital motion. New Journal of Physics, 22, 053009(2020).

    [151] Xilin WANG, Jing CHEN, Yongnan LI et al. Optical orbital angular momentum from the curl of polarization. Physical Review Letters, 105, 253602(2010).

    [152] R DIEKMANN, D L WOLFSON, C SPAHN et al. Nanoscopy of bacterial cells immobilized by holographic optical tweezers. Nature Communications, 7, 13711(2016).

    [153] Ruixue ZHU, T AVSIEVICH, A POPOV et al. Optical tweezers in studies of red blood cells. Cells, 9, 545(2020).

    [154] B MILIC, J O ANDREASSON, W O HANCOCK et al. Kinesin processivity is gated by phosphate release. Proceedings of the National Academy of Sciences of the United States of America, 111, 14136-14140(2014).

    [155] Chao LIU, Chen BAI, Xianghua YU et al. Extended field of view of light-sheet fluorescence microscopy by scanning multiple focus-shifted Gaussian beam arrays. Optics Express, 29, 6158-6168(2021).

    [156] P J KELLER, A D SCHMIDT, A SANTELLA et al. Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nature Methods, 7, 637-642(2010).

    [157] P J KELLER, A D SCHMIDT, J WITTBRODT et al. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science, 322, 1065-1069(2008).

    [158] T VETTENBURG, H I DALGARNO, J NYLK et al. Light-sheet microscopy using an Airy beam. Nature Methods, 11, 541-544(2014).

    [159] Shun QIN. Image reconstruction for large FOV Airy beam light-sheet microscopy by a 3D deconvolution approach. Optics Letters, 45, 2804-2807(2020).

    [160] B HARKE, C K ULLAL, J KELLER et al. Three-dimensional nanoscopy of colloidal crystals. Nano Letters, 8, 1309-1313(2008).

    [161] D WILDANGER, R MEDDA, L KASTRUP et al. A compact STED microscope providing 3D nanoscale resolution. Journal of Microscopy, 236, 35-43(2009).

    [162] J G DANZL, S C SIDENSTEIN, C GREGOR et al. Coordinate-targeted fluorescence nanoscopy with multiple off states. Nature Photonics, 10, 122-128(2016).

    [163] F GORLITZ, S GULDBRAND, T H RUNCORN et al. easySLM-STED: Stimulated emission depletion microscopy with aberration correction, extended field of view and multiple beam scanning. Journal of Biophotonics, 11, e201800087(2018).

    [164] Gang CHEN, Zhongquan WEN, Chengwei QIU. Superoscillation: from physics to optical applications. Light: Science & Applications, 8, 56(2019).

    [165] E T ROGERS, J LINDBERG, T ROY et al. A super-oscillatory lens optical microscope for subwavelength imaging. Nature Materials, 11, 432-435(2012).

    [166] X H DONG, A M H WONG, M KIM et al. Superresolution far-field imaging of complex objects using reduced superoscillating ripples. Optica, 4, 1126-1133(2017).

    [167] Zhaojun WANG, Yanan CAI, Yansheng LIANG et al. Single shot, three-dimensional fluorescence microscopy with a spatially rotating point spread function. Biomedical Optics Express, 8, 5493-5506(2017).

    [168] Yongzhuang ZHOU, P ZAMMIT, V ZICKUS et al. Twin-Airy point-spread function for extended-volume particle localization. Physical Review Letters, 124, 198104(2020).

    [169] Jian WANG, Xuanwen HUA, Changliang GUO et al. Airy-beam tomographic microscopy. Optica, 7, 790-793(2020).

    [170] Linjie LI, R R GATTASS, E GERSHGOREN et al. Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization. Science, 324, 910-913(2009).

    [171] Xiangping LI, Yaoyu CAO, Min GU. Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam. Optics Letters, 36, 2510-2512(2011).

    [172] Zongsong GAN, Yaoyu CAO, R A EVANS et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nature Communications, 4, 2061(2013).

    [173] Baoli YAO, Ming LEI, Liyong REN et al. Polarization multiplexed write-once-read-many optical data storage in bacteriorhodopsin films. Optics Letters, 30, 3060-3062(2005).

    [174] Xiangping LI, Tzuhsiang LAN, Chunghao TIEN et al. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nature Communications, 3, 998(2012).

    [175] P ZIJLSTRA, J W CHON, Min GU. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature, 459, 410-413(2009).

    [176] J F HEANUE, M C BASHAW, L HESSELINK. Volume holographic storage and retrieval of digital data. Science, 265, 749-752(1994).

    [177] P S SALTER, M J WOOLLEY, S M MORRIS et al. Femtosecond fiber Bragg grating fabrication with adaptive optics aberration compensation. Optics Letters, 43, 5993-5996(2018).

    [178] T ZANDRINI, O SHAN, V PARODI et al. Multi-foci laser microfabrication of 3D polymeric scaffolds for stem cell expansion in regenerative medicine. Scientific Reports, 9, 11761(2019).

    [179] Y HAYASAKI, T SUGIMOTO, A TAKITA et al. Variable holographic femtosecond laser processing by use of a spatial light modulator. Applied Physics Letters, 87, 031101(2005).

    [180] Lipu LIU, Dong YANG, Weiping WAN et al. Fast fabrication of silver helical metamaterial with single-exposure femtosecond laser photoreduction. Nanophotonics, 8, 1087-1093(2019).

    [181] Xianghua YU, Baoli YAO, Ming LEI et al. Femtosecond laser-induced permanent anisotropy in bacteriorhodopsin films and applications in optical data storage. Journal of Modern Optics, 60, 309-314(2013).

    [182] Xianghua YU, Chao LIU, Ming LEI et al. Polarization-dependent micro-structure fabrication with direct femtosecond laser writing on plastic polarizer films. Optics Letters, 45, 2588-2591(2020).

    [183] Xianghua YU, Baoli YAO, Ming LEI et al. Polarization-sensitive diffractive optical elements fabricated in BR films with femtosecond laser. Applied Physics B, 115, 365-369(2013).

    [184] Runze LI, Tong PENG, Yansheng LIANG et al. Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media. Journal of Optics, 19, 105602(2017).

    [185] Runze LI, Tong PENG, Meiling ZHOU et al. Rapid wide-field imaging through scattering media by digital holographic wavefront correction. Applied Optics, 58, 2845-2853(2019).

    [186] Runze LI, Tong PENG, Meiling ZHOU et al. Full-polarization wavefront shaping for imaging through scattering media. Applied Optics, 59, 5131-5135(2020).

    [187] Tong PENG, Runze LI, Sha AN et al. Real-time optical manipulation of particles through turbid media. Optics Express, 27, 4858-4866(2019).

    [188] Ting LEI, Meng ZHANG, Yuru LI et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light: Science & Applications, 4, e257(2015).

    [189] Haoran REN, Wei SHAO, Yi LI et al. Three-dimensional vectorial holography based on machine learning inverse design. Science Advances, 6, eaaz4261(2020).

    [190] P W M TSANG, T C POON, Y M WU. Review of fast methods for point-based computer-generated holography Invited. Photonics Research, 6, 837-846(2018).

    [191] J LEE, J JEONG, J CHO et al. Deep neural network for multi-depth hologram generation and its training strategy. Optics Express, 28, 27137-27154(2020).

    Yuan ZHOU, Runze LI, Xianghua YU, Shaohui YAN, Xing LI, Wenyu GAO, Chao LIU, Tong PENG, Yanlong YANG, Junwei MIN, Ping WANG, Jun QU, Baoli YAO. Progress in Study and Application of Optical Field Modulation Technology Based on Liquid Crystal Spatial Light Modulators(Invited)[J]. Acta Photonica Sinica, 2021, 50(11): 1123001
    Download Citation