• Photonics Research
  • Vol. 12, Issue 5, 1055 (2024)
Luigi Ranno1, Jia Xu Brian Sia1,2, Cosmin Popescu1, Drew Weninger1..., Samuel Serna1,3, Shaoliang Yu4, Lionel C. Kimerling1, Anuradha Agarwal5, Tian Gu1,5 and Juejun Hu1,5,*|Show fewer author(s)
Author Affiliations
  • 1Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
  • 2Centre for Micro- & Nano-Electronics (CMNE), Nanyang Technological University, Singapore 639798, Singapore
  • 3Department of Physics, Photonics and Optical Engineering, Bridgewater State University, Bridgewater, Massachusetts 02324, USA
  • 4Zhejiang Laboratory, Hangzhou 311100, China
  • 5Materials Research Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
  • show less
    DOI: 10.1364/PRJ.514999 Cite this Article Set citation alerts
    Luigi Ranno, Jia Xu Brian Sia, Cosmin Popescu, Drew Weninger, Samuel Serna, Shaoliang Yu, Lionel C. Kimerling, Anuradha Agarwal, Tian Gu, Juejun Hu, "Highly efficient fiber to Si waveguide free-form coupler for foundry-scale silicon photonics," Photonics Res. 12, 1055 (2024) Copy Citation Text show less
    References

    [1] N. M. Fahrenkopf, C. McDonough, G. L. Leake. The AIM photonics MPW: a highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 25, 8201406(2019).

    [2] J. X. B. Sia, X. Li, J. Wang. Wafer-scale demonstration of low-loss (∼0.43 dB/cm), high-bandwidth (>38 GHz), silicon photonics platform operating at the C-band. IEEE Photonics J., 14, 6628609(2022).

    [3] K. Wei, W. Li, H. Tan. High-speed measurement-device-independent quantum key distribution with integrated silicon photonics. Phys. Rev. X, 10, 031030(2020).

    [4] A. Sludds, S. Bandyopadhyay, Z. Chen. Delocalized photonic deep learning on the internet’s edge. Science, 378, 270-276(2022).

    [5] Y. Shen, N. C. Harris, S. Skirlo. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).

    [6] J. Sun, R. Kumar, M. Sakib. A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning. J. Lightwave Technol., 37, 110-115(2019).

    [7] D. M. Kita, B. Miranda, D. Favela. High-performance and scalable on-chip digital Fourier transform spectroscopy. Nat. Commun., 9, 4405(2018).

    [8] K. Jang, A. Novick, A. Rizzo. Universal CMOS-foundry compatible platform for ultra-low loss SOI waveguide bends. Optical Fiber Communications Conference and Exhibition (OFC), Th3A.5(2023).

    [9] S. Chung, M. Nakai, H. Hashemi. Low-power thermo-optic silicon modulator for large-scale photonic integrated systems. Opt. Express, 27, 13430-13459(2019).

    [10] Y. Yuan, Y. Peng, W. Sorin. A 1 Tbps DWDM microring modulator silicon chip empowered by two-segment Z-shape junctions. Nat. Commun., 15, 918(2023).

    [11] E. Berikaa, M. S. Alam, S. Bernal. Next-generation O-band coherent transmission for 1.6 Tbps 10 km intra-datacenter interconnects. J. Lightwave Technol., 42, 1126-1135(2023).

    [12] S. Lischke, A. Peczek, J. S. Morgan. Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz. Nat. Photonics, 15, 925-931(2021).

    [13] A. H. Atabaki, S. Moazeni, F. Pavanello. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature, 556, 349-354(2018).

    [14] C. V. Poulton, M. J. Byrd, P. Russo. Long-range LiDAR and free-space data communication with high-performance optical phased arrays. IEEE J. Sel. Top. Quantum Electron., 25, 7700108(2019).

    [15] S. Daudlin, A. Rizzo, S. Lee. 3D photonics for ultra-low energy, high bandwidth-density chip data links. arXiv(2023).

    [16] L. Ranno, Y. Z. Tan, C. S. Ong. Crown ether decorated silicon photonics for safeguarding against lead poisoning. arXiv(2023).

    [17] L. Ranno, P. Gupta, K. Gradkowski. Integrated photonics packaging: challenges and opportunities. ACS Photonics, 9, 3467-3485(2022).

    [18] L. Carroll, J.-S. Lee, C. Scarcella. Photonic packaging: transforming silicon photonic integrated circuits into photonic devices. Appl. Sci., 6, 426(2016).

    [19] R. Marchetti, C. Lacava, L. Carroll. Coupling strategies for silicon photonics integrated chips [Invited]. Photonics Res., 7, 201-239(2019).

    [20] M. Trappen, M. Blaicher, P.-I. Dietrich. 3D-printed optical probes for wafer-level testing of photonic integrated circuits. Opt. Express, 28, 37996-38007(2020).

    [21] R. Polster, L. Y. Dai, O. A. Jimenez. Wafer-scale high-density edge coupling for high throughput testing of silicon photonics. Optical Fiber Communications Conference and Exposition (OFC), 1-3(2018).

    [22] X. Mu, S. Wu, L. Cheng. Edge couplers in silicon photonic integrated circuits: a review. Appl. Sci., 10, 1538(2020).

    [23] L. Cheng, S. Mao, Z. Li. Grating couplers on silicon photonics: design principles, emerging trends and practical issues. Micromachines, 11, 666(2020).

    [24] R. S. Tummidi, M. Webster. Multilayer silicon nitride-based coupler integrated into a silicon photonics platform with <1 dB coupling loss to a standard SMF over O, S, C and L optical bands. Optical Fiber Communications Conference and Exhibition (OFC), Th2A.10(2020).

    [25] Y. Ding, C. Peucheret, H. Ou. Fully etched apodized grating coupler on the SOI platform with −0.58 dB coupling efficiency. Opt. Lett., 39, 5348-5350(2014).

    [26] L. Ranno, J. X. B. Sia, K. P. Dao. Multi-material heterogeneous integration on a 3-D photonic-CMOS platform. Opt. Mater. Express, 13, 2711-2725(2023).

    [27] P.-I. Dietrich, M. Blaicher, I. Reuter. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nat. Photonics, 12, 241-247(2018).

    [28] S. Yu, Q. Du, C. R. Mendonca. Two-photon lithography for integrated photonic packaging. Light Adv. Manuf., 4, 32(2023).

    [29] H. Wang, W. Zhang, D. Ladika. Two-photon polymerization lithography for optics and photonics: fundamentals, materials, technologies, and applications. Adv. Funct. Mater., 33, 2214211(2023).

    [30] O. A. Jimenez Gordillo, S. Chaitanya, Y.-C. Chang. Plug-and-play fiber to waveguide connector. Opt. Express, 27, 20305-20310(2019).

    [31] C. Wan, J. L. Gonzalez, T. Fan. Fiber-interconnect silicon chiplet technology for self-aligned fiber-to-chip assembly. IEEE Photonics Technol. Lett., 31, 1311-1314(2019).

    [32] S. Yu, T. K. Gaylord, M. S. Bakir. Fiber-array-to-chip interconnections with sub-micron placement accuracy via self-aligning chiplets. IEEE Photonics Technol. Lett., 34, 1023-1025(2022).

    [33] S. Yu, T. K. Gaylord, M. S. Bakir. Scalable fiber-array-to-chip interconnections with sub-micron alignment accuracy. IEEE 73rd Electronic Components and Technology Conference (ECTC), 748-752(2023).

    [34] https://www.phix.com/phix-partners-nanoscribe-microlenses/. https://www.phix.com/phix-partners-nanoscribe-microlenses/

    [35] N. Lindenmann, G. Balthasar, D. Hillerkuss. Photonic wire bonding: a novel concept for chip-scale interconnects. Opt. Express, 20, 17667-17677(2012).

    [36] H.-W. Rhee, J. Shim, J.-Y. Kim. Direct optical wire bonding through open-to-air polymerization for silicon photonic chips. Opt. Lett., 47, 714-717(2022).

    [37] M. Blaicher, M. R. Billah, J. Kemal. Hybrid multi-chip assembly of optical communication engines by in situ 3D nano-lithography. Light Sci. Appl., 9, 71(2020).

    [38] M. R. Billah, M. Blaicher, T. Hoose. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica, 5, 876-883(2018).

    [39] S. Yu, J. Lu, V. Ginis. On-chip optical tweezers based on freeform optics. Optica, 8, 409-414(2021).

    [40] S. Singer, Y. Xu, S. T. Skacel. 3D-printed facet-attached optical elements for beam shaping in optical phased arrays. Opt. Express, 30, 46564-46574(2022).

    [41] N. Lindenmann. Photonic Wire Bonding as a Novel Technology for Photonic Chip Interfaces(2018).

    [42] N. Lindenmann, S. Dottermusch, M. L. Goedecke. Connecting silicon photonic circuits to multicore fibers by photonic wire bonding. J. Lightwave Technol., 33, 755-760(2015).

    [43] H. Luo, F. Xie, Y. Cao. Low-loss and broadband fiber-to-chip coupler by 3D fabrication on a silicon photonic platform. Opt. Lett., 45, 1236-1239(2020).

    [44] H. Luo, L. Chen, S. Yu. Efficient four-way vertical coupler array for chip-scale space-division-multiplexing applications. Opt. Lett., 46, 4324-4327(2021).

    [45] S. Yu, L. Ranno, Q. Du. Free-form micro-optics enabling ultra-broadband low-loss off-chip coupling. Laser Photonics Rev., 17, 2200025(2023).

    [46] https://www.eeweb.com/lead-free-solder-reflow-for-semiconductor-power-devices/. https://www.eeweb.com/lead-free-solder-reflow-for-semiconductor-power-devices/

    [47] A. Rizzo, A. Novick, V. Gopal. Massively scalable Kerr comb-driven silicon photonic link. Nat. Photonics, 17, 781-790(2023).

    [48] L. Tombez, E. J. Zhang, J. S. Orcutt. Methane absorption spectroscopy on a silicon photonic chip. Optica, 4, 1322-1325(2017).

    [49] J. Park, S. Kim, D. W. Nam. Free-form optimization of nanophotonic devices: from classical methods to deep learning. Nanophotonics, 11, 1809-1845(2022).

    [50] R. Marchetti, C. Lacava, A. Khokhar. High-efficiency grating-couplers: demonstration of a new design strategy. Sci. Rep., 7, 16670(2017).

    [51] Z. Hou, X. Li, Y. Huang. Physics of elliptical reflectors at large reflection and divergence angles II: analysis of optical beam distortions in integrated ultra-large-angle elliptical curved reflectors. Opt. Commun., 287, 106-116(2013).

    [52] M. Schmid, D. Ludescher, H. Giessen. Optical properties of photoresists for femtosecond 3D printing: refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure. Opt. Mater. Express, 9, 4564-4577(2019).

    [53] B. Snyder, P. O’Brien. Planar fiber packaging method for silicon photonic integrated circuits. Optical Fiber Communications Conference and Exposition (OFC), OM2E.5(2012).

    [54] S. Yu, H. Zuo, X. Sun. Optical free-form couplers for high-density integrated photonics (OFFCHIP): a universal optical interface. J. Lightwave Technol., 38, 3358-3365(2020).

    [55] https://www.nanoscribe.com/en/products/quantum-x-align/. https://www.nanoscribe.com/en/products/quantum-x-align/

    [56] J. Zou, Y. Zhang, J. Hu. Grating coupler with reduced back reflection using λ/4 offset at its grating sub-teeth. J. Lightwave Technol., 37, 1195-1199(2019).

    [57] G. Georgieva, K. Voigt, A. Peczek. Design and performance analysis of integrated focusing grating couplers for the transverse-magnetic TM00 mode in a photonic BiCMOS technology. J. Eur. Opt. Soc. Rapid Publ., 16, 7(2020).

    [58] S. Romero-Garcia, B. Marzban, F. Merget. Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides. IEEE J. Sel. Top. Quantum Electron., 20, 369-379(2014).

    [59] https://mrsisystems.com/mrsi-s-hvm/. https://mrsisystems.com/mrsi-s-hvm/

    [60] H. Gehring, M. Blaicher, W. Hartmann. Low-loss fiber-to-chip couplers with ultrawide optical bandwidth. APL Photonics, 4, 010801(2019).

    [61] P. Gruber. Method for the lithography-based additive manufacturing of a three-dimensional component. U.S. patent(2023).

    [62] https://www.nanoscribe.com/en/products/quantum-x/. https://www.nanoscribe.com/en/products/quantum-x/

    [63] L. Ranno, T. Gu, J. Hu. Integrated freeform optical couplers and fabrication methods thereof. U.S. patent(2023).

    [64] F. Cantoni, D. Maher, E. Bosler. Round-robin testing of commercial two-photon polymerization 3D printers. Addit. Manuf., 76, 103761(2023).

    [65] https://www.upnano.at/technology/#process. https://www.upnano.at/technology/#process

    [66] J. Purtov, A. Verch, P. Rogin. Improved development procedure to enhance the stability of microstructures created by two-photon polymerization. Microelectron. Eng., 194, 45-50(2018).

    [67] J. Riemensberger, N. Kuznetsov, J. Liu. A photonic integrated continuous-travelling-wave parametric amplifier. Nature, 612, 56-61(2022).

    [68] B. Wang, J. S. Morgan, K. Sun. Towards high-power, high-coherence, integrated photonic mmWave platform with microcavity solitons. Light Sci. Appl., 10, 4(2021).

    [69] C. V. Poulton, M. J. Byrd, P. Russo. Coherent LiDAR with an 8,192-element optical phased array and driving laser. IEEE J. Sel. Top. Quantum Electron., 28, 6100508(2022).

    [70] S. Angstenberger, P. Ruchka, M. Hentschel. Hybrid fiber–solid-state laser with 3D-printed intracavity lenses. Opt. Lett., 48, 6549-6552(2023).

    Luigi Ranno, Jia Xu Brian Sia, Cosmin Popescu, Drew Weninger, Samuel Serna, Shaoliang Yu, Lionel C. Kimerling, Anuradha Agarwal, Tian Gu, Juejun Hu, "Highly efficient fiber to Si waveguide free-form coupler for foundry-scale silicon photonics," Photonics Res. 12, 1055 (2024)
    Download Citation