[1] N. M. Fahrenkopf, C. McDonough, G. L. Leake. The AIM photonics MPW: a highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 25, 8201406(2019).
[2] J. X. B. Sia, X. Li, J. Wang. Wafer-scale demonstration of low-loss (∼0.43 dB/cm), high-bandwidth (>38 GHz), silicon photonics platform operating at the C-band. IEEE Photonics J., 14, 6628609(2022).
[3] K. Wei, W. Li, H. Tan. High-speed measurement-device-independent quantum key distribution with integrated silicon photonics. Phys. Rev. X, 10, 031030(2020).
[4] A. Sludds, S. Bandyopadhyay, Z. Chen. Delocalized photonic deep learning on the internet’s edge. Science, 378, 270-276(2022).
[5] Y. Shen, N. C. Harris, S. Skirlo. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).
[6] J. Sun, R. Kumar, M. Sakib. A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning. J. Lightwave Technol., 37, 110-115(2019).
[7] D. M. Kita, B. Miranda, D. Favela. High-performance and scalable on-chip digital Fourier transform spectroscopy. Nat. Commun., 9, 4405(2018).
[8] K. Jang, A. Novick, A. Rizzo. Universal CMOS-foundry compatible platform for ultra-low loss SOI waveguide bends. Optical Fiber Communications Conference and Exhibition (OFC), Th3A.5(2023).
[9] S. Chung, M. Nakai, H. Hashemi. Low-power thermo-optic silicon modulator for large-scale photonic integrated systems. Opt. Express, 27, 13430-13459(2019).
[10] Y. Yuan, Y. Peng, W. Sorin. A 1 Tbps DWDM microring modulator silicon chip empowered by two-segment Z-shape junctions. Nat. Commun., 15, 918(2023).
[11] E. Berikaa, M. S. Alam, S. Bernal. Next-generation O-band coherent transmission for 1.6 Tbps 10 km intra-datacenter interconnects. J. Lightwave Technol., 42, 1126-1135(2023).
[12] S. Lischke, A. Peczek, J. S. Morgan. Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz. Nat. Photonics, 15, 925-931(2021).
[13] A. H. Atabaki, S. Moazeni, F. Pavanello. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature, 556, 349-354(2018).
[14] C. V. Poulton, M. J. Byrd, P. Russo. Long-range LiDAR and free-space data communication with high-performance optical phased arrays. IEEE J. Sel. Top. Quantum Electron., 25, 7700108(2019).
[15] S. Daudlin, A. Rizzo, S. Lee. 3D photonics for ultra-low energy, high bandwidth-density chip data links. arXiv(2023).
[16] L. Ranno, Y. Z. Tan, C. S. Ong. Crown ether decorated silicon photonics for safeguarding against lead poisoning. arXiv(2023).
[17] L. Ranno, P. Gupta, K. Gradkowski. Integrated photonics packaging: challenges and opportunities. ACS Photonics, 9, 3467-3485(2022).
[18] L. Carroll, J.-S. Lee, C. Scarcella. Photonic packaging: transforming silicon photonic integrated circuits into photonic devices. Appl. Sci., 6, 426(2016).
[19] R. Marchetti, C. Lacava, L. Carroll. Coupling strategies for silicon photonics integrated chips [Invited]. Photonics Res., 7, 201-239(2019).
[20] M. Trappen, M. Blaicher, P.-I. Dietrich. 3D-printed optical probes for wafer-level testing of photonic integrated circuits. Opt. Express, 28, 37996-38007(2020).
[21] R. Polster, L. Y. Dai, O. A. Jimenez. Wafer-scale high-density edge coupling for high throughput testing of silicon photonics. Optical Fiber Communications Conference and Exposition (OFC), 1-3(2018).
[22] X. Mu, S. Wu, L. Cheng. Edge couplers in silicon photonic integrated circuits: a review. Appl. Sci., 10, 1538(2020).
[23] L. Cheng, S. Mao, Z. Li. Grating couplers on silicon photonics: design principles, emerging trends and practical issues. Micromachines, 11, 666(2020).
[24] R. S. Tummidi, M. Webster. Multilayer silicon nitride-based coupler integrated into a silicon photonics platform with <1 dB coupling loss to a standard SMF over O, S, C and L optical bands. Optical Fiber Communications Conference and Exhibition (OFC), Th2A.10(2020).
[25] Y. Ding, C. Peucheret, H. Ou. Fully etched apodized grating coupler on the SOI platform with −0.58 dB coupling efficiency. Opt. Lett., 39, 5348-5350(2014).
[26] L. Ranno, J. X. B. Sia, K. P. Dao. Multi-material heterogeneous integration on a 3-D photonic-CMOS platform. Opt. Mater. Express, 13, 2711-2725(2023).
[27] P.-I. Dietrich, M. Blaicher, I. Reuter. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nat. Photonics, 12, 241-247(2018).
[28] S. Yu, Q. Du, C. R. Mendonca. Two-photon lithography for integrated photonic packaging. Light Adv. Manuf., 4, 32(2023).
[29] H. Wang, W. Zhang, D. Ladika. Two-photon polymerization lithography for optics and photonics: fundamentals, materials, technologies, and applications. Adv. Funct. Mater., 33, 2214211(2023).
[30] O. A. Jimenez Gordillo, S. Chaitanya, Y.-C. Chang. Plug-and-play fiber to waveguide connector. Opt. Express, 27, 20305-20310(2019).
[31] C. Wan, J. L. Gonzalez, T. Fan. Fiber-interconnect silicon chiplet technology for self-aligned fiber-to-chip assembly. IEEE Photonics Technol. Lett., 31, 1311-1314(2019).
[32] S. Yu, T. K. Gaylord, M. S. Bakir. Fiber-array-to-chip interconnections with sub-micron placement accuracy via self-aligning chiplets. IEEE Photonics Technol. Lett., 34, 1023-1025(2022).
[33] S. Yu, T. K. Gaylord, M. S. Bakir. Scalable fiber-array-to-chip interconnections with sub-micron alignment accuracy. IEEE 73rd Electronic Components and Technology Conference (ECTC), 748-752(2023).
[34] https://www.phix.com/phix-partners-nanoscribe-microlenses/. https://www.phix.com/phix-partners-nanoscribe-microlenses/
[35] N. Lindenmann, G. Balthasar, D. Hillerkuss. Photonic wire bonding: a novel concept for chip-scale interconnects. Opt. Express, 20, 17667-17677(2012).
[36] H.-W. Rhee, J. Shim, J.-Y. Kim. Direct optical wire bonding through open-to-air polymerization for silicon photonic chips. Opt. Lett., 47, 714-717(2022).
[37] M. Blaicher, M. R. Billah, J. Kemal. Hybrid multi-chip assembly of optical communication engines by in situ 3D nano-lithography. Light Sci. Appl., 9, 71(2020).
[38] M. R. Billah, M. Blaicher, T. Hoose. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica, 5, 876-883(2018).
[39] S. Yu, J. Lu, V. Ginis. On-chip optical tweezers based on freeform optics. Optica, 8, 409-414(2021).
[40] S. Singer, Y. Xu, S. T. Skacel. 3D-printed facet-attached optical elements for beam shaping in optical phased arrays. Opt. Express, 30, 46564-46574(2022).
[41] N. Lindenmann. Photonic Wire Bonding as a Novel Technology for Photonic Chip Interfaces(2018).
[42] N. Lindenmann, S. Dottermusch, M. L. Goedecke. Connecting silicon photonic circuits to multicore fibers by photonic wire bonding. J. Lightwave Technol., 33, 755-760(2015).
[43] H. Luo, F. Xie, Y. Cao. Low-loss and broadband fiber-to-chip coupler by 3D fabrication on a silicon photonic platform. Opt. Lett., 45, 1236-1239(2020).
[44] H. Luo, L. Chen, S. Yu. Efficient four-way vertical coupler array for chip-scale space-division-multiplexing applications. Opt. Lett., 46, 4324-4327(2021).
[45] S. Yu, L. Ranno, Q. Du. Free-form micro-optics enabling ultra-broadband low-loss off-chip coupling. Laser Photonics Rev., 17, 2200025(2023).
[46] https://www.eeweb.com/lead-free-solder-reflow-for-semiconductor-power-devices/. https://www.eeweb.com/lead-free-solder-reflow-for-semiconductor-power-devices/
[47] A. Rizzo, A. Novick, V. Gopal. Massively scalable Kerr comb-driven silicon photonic link. Nat. Photonics, 17, 781-790(2023).
[48] L. Tombez, E. J. Zhang, J. S. Orcutt. Methane absorption spectroscopy on a silicon photonic chip. Optica, 4, 1322-1325(2017).
[49] J. Park, S. Kim, D. W. Nam. Free-form optimization of nanophotonic devices: from classical methods to deep learning. Nanophotonics, 11, 1809-1845(2022).
[50] R. Marchetti, C. Lacava, A. Khokhar. High-efficiency grating-couplers: demonstration of a new design strategy. Sci. Rep., 7, 16670(2017).
[51] Z. Hou, X. Li, Y. Huang. Physics of elliptical reflectors at large reflection and divergence angles II: analysis of optical beam distortions in integrated ultra-large-angle elliptical curved reflectors. Opt. Commun., 287, 106-116(2013).
[52] M. Schmid, D. Ludescher, H. Giessen. Optical properties of photoresists for femtosecond 3D printing: refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure. Opt. Mater. Express, 9, 4564-4577(2019).
[53] B. Snyder, P. O’Brien. Planar fiber packaging method for silicon photonic integrated circuits. Optical Fiber Communications Conference and Exposition (OFC), OM2E.5(2012).
[54] S. Yu, H. Zuo, X. Sun. Optical free-form couplers for high-density integrated photonics (OFFCHIP): a universal optical interface. J. Lightwave Technol., 38, 3358-3365(2020).
[55] https://www.nanoscribe.com/en/products/quantum-x-align/. https://www.nanoscribe.com/en/products/quantum-x-align/
[56] J. Zou, Y. Zhang, J. Hu. Grating coupler with reduced back reflection using λ/4 offset at its grating sub-teeth. J. Lightwave Technol., 37, 1195-1199(2019).
[57] G. Georgieva, K. Voigt, A. Peczek. Design and performance analysis of integrated focusing grating couplers for the transverse-magnetic TM00 mode in a photonic BiCMOS technology. J. Eur. Opt. Soc. Rapid Publ., 16, 7(2020).
[58] S. Romero-Garcia, B. Marzban, F. Merget. Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides. IEEE J. Sel. Top. Quantum Electron., 20, 369-379(2014).
[59] https://mrsisystems.com/mrsi-s-hvm/. https://mrsisystems.com/mrsi-s-hvm/
[60] H. Gehring, M. Blaicher, W. Hartmann. Low-loss fiber-to-chip couplers with ultrawide optical bandwidth. APL Photonics, 4, 010801(2019).
[61] P. Gruber. Method for the lithography-based additive manufacturing of a three-dimensional component. U.S. patent(2023).
[62] https://www.nanoscribe.com/en/products/quantum-x/. https://www.nanoscribe.com/en/products/quantum-x/
[63] L. Ranno, T. Gu, J. Hu. Integrated freeform optical couplers and fabrication methods thereof. U.S. patent(2023).
[64] F. Cantoni, D. Maher, E. Bosler. Round-robin testing of commercial two-photon polymerization 3D printers. Addit. Manuf., 76, 103761(2023).
[65] https://www.upnano.at/technology/#process. https://www.upnano.at/technology/#process
[66] J. Purtov, A. Verch, P. Rogin. Improved development procedure to enhance the stability of microstructures created by two-photon polymerization. Microelectron. Eng., 194, 45-50(2018).
[67] J. Riemensberger, N. Kuznetsov, J. Liu. A photonic integrated continuous-travelling-wave parametric amplifier. Nature, 612, 56-61(2022).
[68] B. Wang, J. S. Morgan, K. Sun. Towards high-power, high-coherence, integrated photonic mmWave platform with microcavity solitons. Light Sci. Appl., 10, 4(2021).
[69] C. V. Poulton, M. J. Byrd, P. Russo. Coherent LiDAR with an 8,192-element optical phased array and driving laser. IEEE J. Sel. Top. Quantum Electron., 28, 6100508(2022).
[70] S. Angstenberger, P. Ruchka, M. Hentschel. Hybrid fiber–solid-state laser with 3D-printed intracavity lenses. Opt. Lett., 48, 6549-6552(2023).