• Chinese Journal of Lasers
  • Vol. 44, Issue 7, 703009 (2017)
Wei Chen*, Shi Hongxia, Luo Hongyu, Xie Jitao, Zhai Bo, Yuan Fei, and Liu Yong
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/cjl201744.0703009 Cite this Article Set citation alerts
    Wei Chen, Shi Hongxia, Luo Hongyu, Xie Jitao, Zhai Bo, Yuan Fei, Liu Yong. Research Progress of Pulsed Mid-Infrared Fiber Lasers Using Two-Dimensional Materials[J]. Chinese Journal of Lasers, 2017, 44(7): 703009 Copy Citation Text show less
    References

    [1] Steiner R. Medical applications of mid-IR solid-statelasers[M]. Netherlands: Springer, 2008: 575-588.

    [2] Tittel F K, Wysocki G, Kosterev A, et al. Semiconductor laser based trace gas sensor technology: recent advances and applications[M]. Netherlands: Springer, 2008: 467-493.

    [3] Ngai A K Y, Persijn S T, van Herpen M M J W, et al. Photoacoustic spectroscopy using continuous wave optical parametric oscillators[M].Netherlands: Springer, 2008: 511-533.

    [4] Sorokina I T. Crystalline mid-infrared lasers[M]. Heidelberg: Springer, 2003: 262-358.

    [5] Yao Y, Hoffman A J,Gmachl C F. Mid-infrared quantum cascade lasers[J]. Nature Photonics, 2012, 6(7): 432-439.

    [6] Fischer C, Sigrist M W. Mid-IR difference frequency generation[M]. Heidelberg: Springer, 2003: 99-143.

    [7] Vodopyanov K. Pulsed mid-IR optical parametric oscillators[M]. Heidelberg: Springer, 2003: 144-183.

    [8] Jackson S D. Towards high-power mid-infrared emission from a fiberlaser[J]. Nature Photonics, 2012, 6(7): 423-431.

    [9] Fortin V, Bernier M, Bah S T, et al. 30 W fluoride glass all-fiber laser at 2.94 μm[J]. Optics Letters, 2015, 40(12): 2882-2885.

    [10] Hu T, Hudson DD, Jackson S D. Actively Q-switched 2.9 μm Ho3+-Pr3+-doped fluoride fiber laser[J]. Optics Letters, 2012, 37(11): 2145-2147.

    [11] Li J, Hudson DD, Liu Y, et al. Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror[J]. Optics Letters, 2012, 37(18): 3747-3749.

    [12] Tang P, Qin Z, Liu J, et al. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 2015, 40(21): 4855-4858.

    [13] Wei C, Zhu X, Norwood R A,et al. Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 2012, 37(18): 3849-3851.

    [14] Li J, Luo H, Wang L,et al. Tunable Fe2+: ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm[J]. Optics Express, 2015, 23(17): 22362-22370.

    [15] Wei Chen, ShiHongxia, Luo Hongyu, et al. High-power tunable passively Q-switched Er3+-doped fluoride fiber laser[J]. Chinese J Lasers, 2016, 43(9): 0915001.

    [16] Hasan T, Sun Z, Wang F,et al. Nanotube-polymer composites for ultrafast photonics[J]. Advanced Materials, 2009, 21(38/39): 3874-3899.

    [17] Bao Q, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.

    [18] Wei C, Zhu X, Wang F, et al. Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser[J]. Optics Letters, 2013, 38(17): 3233-3236.

    [19] Zhao W, Ribeiro R M,Toh M, et al. Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2[J]. Nano Letters, 2013, 13(11): 5627-5634.

    [20] Chhowalla M, Shin H S, Eda G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4): 263-275.

    [21] Zhu G, Zhu X, Wang F, et al. Graphene mode-locked fiber laser at 2.8 μm[J]. IEEE Photonics Technology Letters, 2016, 28(1): 7-10.

    [22] Fan M, Li T, Zhao S,et al. Multilayer black phosphorus as saturable absorber for an Er∶Lu2O3 laser at ~3 μm[J]. Photonics Research, 2016, 4(5): 181-186.

    [23] Li J, Luo H, Zhai B, et al. Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers[J]. Scientific Reports, 2016, 6: 30361.

    [24] Li J, Luo H, Wang L,et al. 3 μm mid-infrared pulse generation using topological insulator as the saturable absorber[J]. Optics Letters, 2015, 40(15): 3659-3662.

    [25] Tang P, Wu M, Wang Q,et al. 2.8 μm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator[J]. IEEE Photonics Technology Letters, 2016, 28(14): 1573-1576.

    [26] Popa D, Sun Z, Torrisi F, et al. Sub 200 fs pulse generation from a graphene mode-locked fiber laser[J]. Applied Physics Letters, 2010, 97(20): 203106.

    [27] Song Y W, Jang S Y, Han W S,et al. Graphene mode-lockers for fiber lasers functioned with evanescent field interaction[J]. Applied Physics Letters, 2010, 96(5): 051122.

    [28] Wang J, Luo Z, Zhou M, et al. Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker[J]. IEEE Photonics Journal, 2012, 4(5): 1295-1305.

    [29] Yang Guang, Lou Jiachang, Han Daming, et al. Passively Q-swiched mode-locked Thulium-doped fiber laser by using graphene saturable absorber on tapered fiber[J]. Chinese J Lasers, 2015, 42(s1): s102014.

    [30] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

    [31] Dawlaty J M, Shivaraman S, Chandrashekhar M, et al. Measurement of ultrafast carrier dynamics in epitaxial graphene[J]. Applied Physics Letters, 2008, 92(4): 042116.

    [32] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.

    [33] Zhang H, Tang D Y, Zhao L M,et al. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene[J]. Optics Express, 2009, 17(20): 17630-17635.

    [34] Sun Z, Hasan T,Torrisi F, et al. Graphene mode-locked ultrafast laser[J]. ACS Nano, 2010, 4(2): 803-810.

    [35] Luo Z, Zhou M,Weng J, et al. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser[J]. Optics Letters, 2010, 35(21): 3709-3711.

    [36] Liu J, Wu S, Yang Q H,et al. Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser[J]. Optics Letters, 2011, 36(20): 4008-4010.

    [37] Popa D, Sun Z, Hasan T, et al. Graphene Q-switched, tunable fiber laser[J]. Applied Physics Letters 2010, 98(7): 073106.

    [38] Sobon G, Sotor J, Pasternak I, et al. Er-doped fiber laser mode-locked by CVD-graphene saturable absorber[J]. Journal of Lightwave Technology, 2012, 30(30): 2770-2775.

    [39] Sobon G, Sotor J, Pasternak I, et al. Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber[J]. Optics Express, 2013, 21(10): 12797-12802.

    [40] Zhang M, Kelleher E J R,Torrisi F, et al. Tm-doped fiber laser mode-locked by graphene-polymer composite[J]. Optics Express, 2012, 20(22): 25077-25084.

    [41] Liu J, Xu J, Wang P. Graphene-based passively Q-switched 2 μm Thulium-doped fiber laser[J]. Optics Communications, 2012, 285(24): 5319-5322.

    [42] Cizmeciyan M N, Kim J W, Bae S, et al. Graphene mode-locked femtosecond Cr∶ZnSe laser at 2500 nm[J]. Optics Letters, 2013, 38(3): 341-343.

    [43] Zhu G, Zhu X,Balakrishnan K, et al. Fe2+: ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm[J]. Optical Materials Express, 2013, 3(9): 1365-1377.

    [44] Liu H, Du Y, Deng Y,et al. Semiconducting black phosphorus: synthesis, transport properties and electronic applications[J]. Chemical Society Reviews, 2015, 44(9): 2732-2743.

    [45] Tran V,Soklaski R, Liang Y, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Physical Review B, 2014, 89(23): 235319.

    [46] Yuan H, Liu X,Afshinmanesh F, et al. Broadband linear-dichroic photodetector in a black phosphorus vertical pn junction[J]. arXiv Preprint arXiv: 1409. 4729, 2014.

    [47] Kang Z, Xu Y, Zhang L,et al. Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers[J]. Applied Physics Letters, 2013, 103(4): 041105.

    [48] Abbas A N, Liu B, Chen L,et al. Black phosphorus gas sensors[J]. ACS Nano, 2015, 9(5): 5618-5624.

    [49] Li L, Yu Y, Ye G J,et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377.

    [50] Dai J, Zeng X C. Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solarcells[J]. Journal of Physical Chemistry Letters, 2014, 5(7): 1289-1293.

    [51] Lu S B, Miao LL, Guo Z N, et al. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material[J]. Optics Express, 2015, 23(9): 11183-11194.

    [52] Chen Y, Jiang G, Chen S,et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J]. Optics Express, 2015, 23(10): 12823-12833.

    [53] Mu H, Lin S, Wang Z, et al. Black phosphorus-polymer composites for pulsed lasers[J]. Advanced Optical Materials, 2015, 3(10): 1447-1453.

    [54] Sotor J, Sobon G, Macherzynski W, et al. Black phosphorus saturable absorber for ultrashort pulse generation[J]. Applied Physics Letters, 2015, 107(5): 051108.

    [55] Luo Z C, Liu M,Guo Z N, et al. Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser[J]. Optics Express, 2015, 23(15): 20030-20039.

    [56] Sotor J, Sobon G, Kowalczyk M, et al. Ultrafast Thulium-doped fiber laser mode locked with black phosphorus[J]. Optics Letters, 2015, 40(16): 3885-3888.

    [57] Yu H, Zheng X, Yin K,et al. Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets[J]. Optical Materials Express, 2016, 6(2): 603-609.

    [58] Qin Z,Xie G, Zhang H, et al. Black phosphorus as saturable absorber for the Q-switched Er: ZBLAN fiber laser at 2.8 μm[J]. Optics Express, 2015, 23(19): 24713-24718.

    [59] Qin Z,Xie G, Zhao C, et al. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber[J]. Optics Letters, 2016, 41(1): 56-59.

    [60] Hasan M Z, Kane C L. Colloquium: topologicalinsulators[J]. Reviews of Modern Physics, 2010, 82(4): 3045.

    [61] Zhao C, Zhang H, Qi X,et al. Ultra-short pulse generation by a topological insulator based saturable absorber[J]. Applied Physics Letters, 2012, 101(21): 211106.

    [62] Chen Y, Zhao C, Huang H,et al. Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an Erbium-doped fiber laser[J]. Journal of Lightwave Technology, 2013, 31(17): 2857-2863.

    [63] Chen S, Zhao C, Li Y, et al. Broadband optical and microwave nonlinear response in topological insulator[J]. Optical Materials Express, 2014, 4(4): 587-596.

    [64] Luo Z, Huang Y,Weng J, et al. 1.06 μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber[J]. Optics Express, 2013, 21(24): 29516-29522.

    [65] Sotor J, Sobon G, Grodecki K, et al. Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator[J]. Applied Physics Letters, 2014, 104(25): 251112.

    [66] Lee J, Koo J,Jhon Y M, et al. A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator[J]. Optics Express, 2014, 22(5): 6165-6173.

    [67] Liu H, Zheng X W, Liu M,et al. Femtosecond pulse generation from a topological insulator mode-locked fiber laser[J]. Optics Express, 2014, 22(6): 6868-6873.

    [68] Jung M, Lee J, Koo J,et al. A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator[J]. Optics Express, 2014, 22(7): 7865-7874.

    [69] Luo Z, Liu C, Huang Y,et al. Topological-insulator passively Q-switched double-clad fiber laser at 2 μm wavelength[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 1-8.

    [70] Jiang Tian, Yin Ke, Zhang Bin, et al. Topological insulators based mid-infrared mode-locked fiber laser[J]. Chinese J Lasers, 2015, 42(6): 0619001.

    [71] Glinka Y D, Babakiray S, Johnson T A, et al. Ultrafast carrier dynamics in thin-films of the topological insulator Bi2Se3[J]. Applied Physics Letters, 2013, 103(15): 151903.

    [72] Li Y, Rao Y,Mak K F, et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation[J]. Nano Letters, 2013, 13(7): 3329-3333.

    [73] Kang J, Liu W, Sarkar D, et al. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors[J]. Physical Review X, 2014, 4(3): 031005.

    [74] Huang X, Zeng Z, Zhang H. Metaldichalcogenide nanosheets: preparation, properties and applications[J]. Chemical Society Reviews, 2013, 42(5): 1934-1946.

    [75] Wang Q H,Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712.

    [76] Wang K, Wang J, Fan J, et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets[J]. ACS Nano, 2013, 7(10): 9260-9267.

    [77] Wang S, Yu H, Zhang H, et al. Broadband few-layer MoS2 saturable absorbers[J]. Advanced Materials, 2014, 26(21): 3538-3544.

    [78] Fan M, Li T, Zhao S,et al. Watt-level passively Q-switched Er: Lu2O3 laser at 2.84 μm using MoS2[J]. Optics Letters, 2016, 41(3): 540-543.

    [79] Wei C, Luo H, Zhang H, et al. Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide(WS2)saturable absorber[J]. Laser Physics Letters, 2016, 13(10): 105108.

    [80] Mao D, She X, Du B, et al. Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets[J]. Scientific Reports, 2016, 6: 23583.

    [81] Woodward R I, Kelleher E J R, Howe R C T, et al. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer Molybdenum disulfide(MoS2)[J]. Optics Express, 2014, 22(25): 31113-31122.

    [82] Woodward R I, Howe R C T,Runcorn T H, et al. Wideband saturable absorption in few-layer Molybdenum diselenide (MoSe2) for Q-switching Yb-, Er-and Tm-doped fiber lasers[J]. Optics Express, 2015, 23(15): 20051-20061.

    [83] Xia H, Li H, Lan C,et al. Ultrafast Erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide(MoS2) saturable absorber[J]. Optics Express, 2014, 22(14): 17341-17348.

    [84] Tian Z, Wu K, Kong L, et al. Mode-locked Thulium fiber laser with MoS2[J]. Laser Physics Letters, 2015, 12(6): 065104.

    [85] Henderson-Sapir O, Jackson S D, Ottaway D J. Versatile and widely tunable mid-infrared Erbium doped ZBLAN fiber laser[J]. Optics Letters, 2016, 41(7): 1676-1679.

    [86] Majewski M R, Jackson S D. Tunable dysprosium laser[J]. Optics Letters, 2016, 41(19): 4496-4498.

    Wei Chen, Shi Hongxia, Luo Hongyu, Xie Jitao, Zhai Bo, Yuan Fei, Liu Yong. Research Progress of Pulsed Mid-Infrared Fiber Lasers Using Two-Dimensional Materials[J]. Chinese Journal of Lasers, 2017, 44(7): 703009
    Download Citation