• Journal of the Chinese Ceramic Society
  • Vol. 50, Issue 4, 1132 (2022)
CAO Enhao1,2,*, ZHOU Dacheng1,2, LIU Ying1,2, YANG Yong1,2..., HASSAN Babeker1,2, WANG Qi1,2 and QIU Jianbei1,2|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.14062/j.issn.0454-5648.20211037 Cite this Article
    CAO Enhao, ZHOU Dacheng, LIU Ying, YANG Yong, HASSAN Babeker, WANG Qi, QIU Jianbei. Optical Properties of CsPbX3 Quantum Dots Embedded Glass-Ceramics[J]. Journal of the Chinese Ceramic Society, 2022, 50(4): 1132 Copy Citation Text show less
    References

    [1] BARBAGIOVANNI E G, LOCKWOOD D J, SIMPSON P J, et al. Quantum confinement in Si and Ge nanostructures: Theory and experiment[J]. Appl Phys Rev, 2014, 1(1): 011302.

    [2] MCEUEN P L. Artificial atoms: new boxes for electrons[J]. Science, 1997, 278(5344): 1729-1730.

    [5] ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271(5251): 933-937.

    [6] TENG Y, SHARAFUDEEN K, ZHOU S, et al. Glass-ceramics for photonic devices[J]. J Ceram Soc Jpn, 2012, 120(1407): 458-466.

    [7] HUANG X, GUO Q, YANG D, et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium[J]. Nat Photon, 2020, 14(2): 82-88.

    [8] LIN J, LU Y, LI X, et al. Perovskite quantum dots glasses based backlit displays[J]. ACS Energy Lett, 2021, 6(2): 519-528.

    [9] HOU J, CHEN P, SHUKLA A, et al. Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses[J]. Science, 2021, 374(6567): 621-625.

    [10] JACKSON, H. Some colouring agents in glasses and glazes[J]. Nature, 1927, 120: 264-266.

    [11] ROOKSBY H P. The colour of selenium ruby glasses[J]. J Soc Glass Technol, 1932, 16: 171.

    [12] SULLIVAN J D, AUSTIN C R. Selenium ruby glass[J]. J Am Ceram Soc, 1942, 25(5): 123-127.

    [13] AUSTIN C R, SULLIVAN J D. Selenium Ruby Glass[P]. US Patent, 2382282. 1945-08-14.

    [16] WANG C, LIN H, XIANG X, et al. CsPbBr3/EuPO4 dual-phase devitrified glass for highly sensitive self-calibrating optical thermometry[J]. J Mater Chem C, 2018, 6(37): 9964-9971.

    [17] YUAN S, CHEN D, LI X, et al. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing[J]. ACS Appl Mater Interfaces, 2018, 10(22): 18918-18926.

    [18] MA D W, CHENG C. Crystallization behaviors of PbSe quantum dots in silicate glasses[J]. J Am Ceram Soc, 2013, 96(5): 1428-1435.

    [19] ZHANG X, GUO L, ZHANG Y, et al. Excellent exciton luminescence of CsPbI3 red quantum dots in borate glass[J]. J Non-Cryst Solids, 2020, 541: 120066.

    [20] STANLEY H B, BANERJEE D, VAN BREEMEN L, et al. X-ray irradiation induced reduction and nanoclustering of lead in borosilicate glass[J]. Cryst Eng Comm, 2014, 16(39): 9331-9339.

    [21] DE LAMAESTRE R E, BéA H, BERNAS H, et al. Irradiation-induced Ag nanocluster nucleation in silicate glasses: Analogy with photography[J]. Phys Rev B, 2007, 76(20): 205431.

    [22] MANGOLD H M, KARL H, KRENNER H J. Site-selective ion beam synthesis and optical properties of individual cdse nanocrystal quantum dots in a SiO2 matrix[J]. ACS Appl Mater Interfaces, 2014, 6(3): 1339-1344.

    [23] SO B, LIU C, HEO J. Plasmon-assisted precipitation of PbS quantum dots in glasses containing Ag nanoparticles[J]. J Am Ceram Soc, 2014, 97(8): 2420-2422.

    [24] VARMA R S, KOTHARI D C, TEWARI R. Nano-composite soda lime silicate glass prepared using silver ion exchange[J]. J Non-Cryst Solids, 2009, 355(22-23): 1246-1251.

    [26] HAO X J, CHO E C, FLYNN C, et al. Effects of boron doping on the structural and optical properties of silicon nanocrystals in a silicon dioxide matrix[J]. Nanotechnology, 2008, 19(42): 424019.

    [28] LUONG J C, BORRELLI N F. Fabrication of III-V semiconductor quantum dots in porous glass[J]. MRS Proc, 1988, 144: 695-700.

    [29] KIR'YANOV A V, PAUL M C, BARMENKOV Y O, et al. Silicon nano-particles doped optical fiber: fabrication, characterization, and application[J]. J Lightwave Technol, 2013, 31(11): 1762-1774.

    [30] LOIUDICE A, SARIS S, OVEISI E, et al. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat[J]. Angew Chem Int Ed, 2017, 56(36): 10696-10701.

    [31] XIANG X, LIN H, LI R, et al. Stress-induced CsPbBr3 nanocrystallization on glass surface: Unexpected mechanoluminescence and applications[J]. Nano Res, 2019, 12: 1049-1054.

    [32] LI P, XIE W, MAO W, et al. Luminescence enhancement of CsPbBr3 quantum dot glasses induced by two unexpected methods: Mechanical and hydration crystallization[J]. J Mater Chem C, 2020, 8(2): 473-480.

    [33] NAM Y H, HAN K, CHUNG W J, et al. Double encapsulation of cspbbr3 perovskite nanocrystals with inorganic glasses for robust color converters with wide color gamut[J]. ACS Appl Nano Mater, 2021, 4(7): 7072-7078.

    [34] HE M, CHENG Y, SHEN L, et al. Mn-doped CsPbCl3 perovskite quantum dots (PQDs) incorporated into silica/alumina particles used for WLEDs[J]. Appl Surface Sci, 2018, 448: 400-406.

    [35] LI Z, KONG L, HUANG S, et al. Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a silica/alumina monolith[J]. Angew Chem, 2017, 129(28): 8246-8250.

    [37] HAN Y, SUN J, YE S, et al. A stimuli responsive material of perovskite quantum dots composited nano-porous glass[J]. J Mater Chem C, 2018, 6(41): 11184-11192.

    [38] LI Z, SONG C, LI J, et al. Highly efficient and water-stable lead halide perovskite quantum dots using superhydrophobic aerogel inorganic matrix for white light-emitting diodes[J]. Adv Mater Technol, 2020, 5(2): 1900941.

    [39] ZHANG X, LUO W, WANG L J, et al. Third-order nonlinear optical vitreous material derived from mesoporous silica incorporated with Au nanoparticles[J]. J Mater Chem C, 2014, 2(34): 6966-6970.

    [41] WENG K, LONG N, GUO Y, et al. Nanocrystallization of α-CsPbI3 perovskite nanocrystals in GeS2-Sb2S3 based chalcogenide glass[J]. J Eur Ceram Soc, 2020, 40(12): 4148-4152.

    [42] CHEN D, LIU Y, YANG C, et al. Promoting photoluminescence quantum yields of glass-stabilized CsPbX3 (X=Cl, Br, I) perovskite quantum dots through fluorine doping[J]. Nanoscale, 2019, 11(37): 17216-17221.

    [43] ZHANG B, ZHANG K, LI L, et al. Enhancing stability and luminescence quantum yield of CsPbBr3 quantum dots by embedded in borosilicate glass[J]. J Alloys Compd, 2021, 874: 159962.

    [44] XU Z, CHEN T, ZHANG D, et al. Tuning the optical properties in CsPbBr3 quantum dot-doped glass by modulation of its network topology[J]. J Mater Chem C, 2021, 9: 6863-6872.

    [45] ZHU Y, YANG B, LU Q, et al. A cyan emitting CsPbBr3 perovskite quantum dot glass with Bi doping[J]. ECS J Solid State Sci Technol, 2020, 9(12): 126003.

    [46] ZHANG K, ZHOU D, QIU J, et al. Silver nanoparticles enhanced luminescence and stability of CsPbBr3 perovskite quantum dots in borosilicate glass[J]. J Am Ceram Soc, 2020, 103(4): 2463-2470.

    [47] SHEN Y, MA L, JIANG H. Effect of SiO2 and Al2O3 on the luminescence properties of inorganic perovskite (CsPbBr3) quantum dot glass[J]. J Non-Cryst Solids, 2021, 568: 120956.

    [48] ZHANG K, ZHOU D, QIU J, et al. Effect of topological structure on photoluminescence of CsPbBr3 quantum dot doped glasses[J]. J Alloys Compd, 2020, 826: 154111.

    [49] PANG X, SI S, XIE L, et al. Regulating the morphology and luminescence properties of CsPbBr3 perovskite quantum dots through the rigidity of glass network structure[J]. J Mater Chem C, 2020, 8(48): 17374-17382.

    [50] DU Y, WANG X, SHEN D, et al. Precipitation of CsPbBr3 quantum dots in borophosphate glasses inducted by heat-treatment and UV-NIR ultrafast lasers[J]. Chem Eng J, 2020, 401: 126132.

    [51] HU Y, ZHANG W, YE Y, et al. Femtosecond-laser-induced precipitation of CsPbBr3 perovskite nanocrystals in glasses for solar spectral conversion[J]. ACS Appl Nano Mater, 2019, 3(1): 850-857.

    [52] SUN K, TAN D, FANG X, et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass[J]. Science, 2022, 375(6578): 307-310.

    [53] DUAN Y, LI P, LU Y, et al. Erasable Cs4PbBr6 quantum dots glass with switchable photoluminescence[J]. Opt Lett, 2021, 46(15): 3580-3583.

    [54] ZHANG L, LIN H, WANG C, et al. A solid-state colorimetric fluorescence Pb2+-sensing scheme: mechanically-driven CsPbBr3 nanocrystallization in glass[J]. Nanoscale, 2020, 12(16): 8801-8808.

    [55] LU Y, LI P, XIE W, et al. Negative thermal quenching CsPbBr3 glass-ceramic based on intrinsic radiation and vacancy defect co-induced dual-emission[J]. J Eur Ceram Soc, 2021, 41(6): 3635-3642.

    [56] LI P, DUAN Y, LU Y, et al. Nanocrystalline structure control and tunable luminescence mechanism of Eu-doped CsPbBr3 quantum dot glass for WLEDs[J]. Nanoscale, 2020, 12(12): 6630-6636.

    [57] WANG Y, ZHANG R, YUE Y, et al. Room temperature synthesis of CsPbX3 (X=Cl, Br, I) perovskite quantum dots by water-induced surface crystallization of glass[J]. J Alloys Compd, 2020, 818: 152872.

    [59] CAO E, QIU J, ZHOU D, et al. The synthesis of a perovskite CsPbBr3 quantum dot superlattice in borosilicate glass[J]. Chem Commun, 2020, 56(32): 4460-4463.

    [61] PANG X, ZHANG H, XIE L, et al. Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays[J]. J Mater Chem C, 2019, 7(42): 13139-13148.

    [62] ORESHKINA K, DUBROVIN V, SGIBNEV Y, et al. Luminescent Glass with Lead Perovskite Quantum Dots for Solar Concentrators[C]//2020 International Conference Laser Optics (ICLO). IEEE, 2020: 1-1.

    [63] LIN M, ZHANG X, GUO L, et al. Blue and green light exciton emission of chloro-brominated perovskite quantum dots glasses[J]. Opt Mater, 2021, 122: 111654.

    [64] ZHANG X, GUO L, ZHANG Y, et al. Improved photoluminescence quantum yield of CsPbBr3 quantum dots glass ceramics[J]. J Am Ceram Soc, 2020, 103(9): 5028-5035.

    [65] ZHANG X, LIN M, GUO L, et al. Long-wavelength pass filter using green CsPbBr3 quantum dots glass[J]. Opt Laser Technol, 2021, 138: 106857.

    [66] ZHANG H, YUAN L, CHEN Y, et al. Amplified spontaneous emission and random lasing using CsPbBr3 quantum dot glass through controlling crystallization[J]. Chem Commun, 2020, 56(19): 2853-2856.

    [67] LIU X, MEI E, LIU Z, et al. Stable, low-threshold amplification spontaneous emission of blue-emitting CsPbCl2Br1 perovskite nanocrystals glasses with controlled crystallization[J]. ACS Photon, 2021, 8(3): 887-893.

    [68] KOLOBKOVA E V, Kuznetsova M S, NIKONOROV N V. Perovskite CsPbX3 (X=Cl, Br, I) nanocrystals in fluorophosphate glasses[J]. J Non-Cryst Solids, 2021, 563: 120811.

    [69] AI B, LIU C, DENG Z, et al. Low temperature photoluminescence properties of CsPbBr3 quantum dots embedded in glasses[J]. Phys Chemy Chem Phys, 2017, 19(26): 17349-17355.

    [70] DU Y, YAN S, LI Z, et al. Spectral properties of inorganic cspbbr3 quantum dots embedded in phosphate fibers[J]. J Alloys Compd, 2021: 160714.

    [71] CHEN S. Optical properties of CsPbCl3 nanocrystals in phosphate glass[J]. J Mater Sci: Mater Electron, 2019, 30(21): 19536-19540.

    [72] DUAN Y, LI P, LU Y, et al. Origin of bimodal luminescence in Cs4PbBr6 quantum dots glass ceramic[J]. Ceram Int, 2021, 47(10): 13381-13390.

    [73] EROL E, KBRSL O, ERSUNDU M , et al. Size-controlled emission of long-time durable CsPbBr3 perovskite quantum dots embedded tellurite glass nanocomposites[J]. Chem Eng J, 2020, 401: 126053.

    [74] ARYAL P, KIM H J, SAHA S, et al. Rapid and convenient crystallization of quantum dot CsPbBr3 inside a phosphate glass matrix[J]. J Alloys Compd, 2021, 866: 158974.

    [75] DUAN Y, LI P, LU Y, et al. Enhanced luminescence of self-crystallized Cs4PbBr6 quantum dots via regulating glass ceramic network structure[J]. Ceram Int, 2021, 47(17): 24198-24206.

    [76] LIU Y, GAO Z, ZHANG W, et al. Stimulated emission from CsPbBr3 quantum dot nanoglass[J]. Opt Mater Express, 2019, 9(8): 3390-3405.

    [77] LU Y, LI P, XIE W, et al. Pure green emission self-crystallization CsPbBr3 quantum dot glass with Ag+ doping for stable light-emitting devices[J]. Opt Lett, 2021, 46(11): 2597-2600.

    [78] WANG D, QIU J, ZHOU D, et al. Lithium doping induced self-crystallization of CsPbBr3 nanocrystal glass with improved quantum yield and stability[J]. Chem Eng J, 2021, 421: 127777.

    [79] DUAN Y, LI P, LU Y, et al. Blue-green tunable luminescence mechanism of a novel Tb3+ doped Cs4PbBr6 quantum dots tellurite glass[J]. J Lumin, 2021, 231: 117799.

    [80] LI S, LIU G, LIU Q, et al. Ultrastable zero-dimensional Cs4PbBr6 perovskite quantum dot glass[J]. ACS Sustain Chem Eng, 2020, 8(29): 10646-10652.

    [81] SHAO G, LIU S, DING L, et al. KxCs1-xPbBr3 NCs glasses possessing super optical properties and stability for white light emitting diodes[J]. Chem Eng J, 2019, 375: 122031.

    [82] ZHANG H, YUAN R, JIN M, et al. Rb+-doped CsPbBr3 quantum dots with multi-color stabilized in borosilicate glass via crystallization[J]. J Eur Ceram Soc, 2020, 40(1): 94-102.

    [83] HE M, DING L, LIU S, et al. Superior fluorescence and high stability of B-Si-Zn glasses based on Mn-doped CsPbBrxI3-x nanocrystals[J]. J Alloys Compd, 2019, 780: 318-325.

    [84] HE M, CHENG Y, SHEN L, et al. Doping manganese into CsPb(Cl/Br)3 quantum dots glasses: Dual-color emission and super thermal stability[J]. J Am Ceram Soc, 2019, 102(3): 1090-1100.

    [85] LIU S, SHAO G, DING L, et al. Sn-doped CsPbBr3 QDs glasses with excellent stability and optical properties for WLED[J]. Chem Eng J, 2019, 361: 937-944.

    [86] DING L, LIU S, ZHANG Z, et al. Stable Zn-doped CsPbBr3 NCs glasses toward an enhanced optical performance for WLED[J]. Ceram Int, 2019, 45(17): 22699-22706.

    [87] DING L, SHEN C, ZHAO Y, et al. CsPbBr3 nanocrystals glass facilitated with Zn ions for photocatalytic hydrogen production via H2O splitting[J]. Molecular Catal, 2020, 483: 110764.

    [88] ZHANG Z, SHEN L, Zhang H, et al. Novel red-emitting CsPb1-xTixI3 perovskite QDs@ glasses with ambient stability for high efficiency white LEDs and plant growth LEDs[J]. Chem Eng J, 2019, 378: 122125.

    [89] SHEN L, ZHANG Z, ZHAO Y, et al. Synthesis and optical properties of novel mixed-metal cation CsPb1-xTixBr3-based perovskite glasses for W-LED[J]. J Am Ceram Soc, 2020, 103(1): 382-390.

    [90] ZHAO Y, SHEN C, DING L, et al. Novel B-site Cd2+ doped CsPbBr3 quantum dot glass toward strong fluorescence and high stability for wLED[J]. Opt Mater, 2020, 107: 110046.

    [91] LONG N, LIN C, CHEN F, et al. Nanocrystallization of lead-free Cs3Sb2Br9 perovskites in chalcogenide glass[J]. J Am Ceram Soc, 2020, 103(11): 6106-6111.

    [92] LIU J, LIU S, CHEN Y, et al. Sm3+-doped CsPbBr3 NCs glass: A luminescent material for potential use in lighting engineering[J]. Ceram Int, 2019, 45(17): 22688-22693.

    [93] ZHOU Y, LIU C, ZHAO Z, et al. Enhanced luminescence of Mn doped CsPbCl3 and CsPb(Cl/Br)3 perovskite nanocrystals stabilized in glasses[J]. J Alloys Compd, 2020, 827: 154349.

    [94] CAO L Y, SI S C, YU J B, et al. A precisely space-separated strategy of donor-acceptor for intense red emitting composite borosilicate glass co-doped with CsPbCl3 quantum dots and Mn2+ ions[J]. Chem Eng J, 2021, 417: 129177.

    [95] ZHUANG B, LIU Y, YUAN S, et al. Glass stabilized ultra-stable dual-emitting Mn-doped cesium lead halide perovskite quantum dots for cryogenic temperature sensing[J]. Nanoscale, 2019, 11(32): 15010-15016.

    [96] YUAN R, SHEN L, SHEN C, et al. CsPbBr3:xEu3+ perovskite QD borosilicate glass: a new member of the luminescent material family[J]. Chem Commun, 2018, 54(27): 3395-3398.

    [97] YUAN R, LIU J, ZHANG H, et al. Eu3+-doped CsPbBr1.5I1.5 quantum dots glasses: A strong competitor among red fluorescence solid materials[J]. J Am Ceram Soc, 2018, 101(11): 4927-4932.

    [98] HE Q, ZHANG Y, YU Y, et al. Ultrastable Gd3+ doped CsPbBrI2 nanocrystals red glass for high efficiency WLEDs[J]. Chem Eng J, 2021, 411: 128530.

    [99] ZHU Y, YANG B, LU Q, et al. Stable Dy-doped CsPbBr3 quantum dot glass with enhanced optical performance[J]. J Non-Cryst Solids, 2022, 575: 121224.

    [100] YUAN L, ZHOU L, XIANG W, et al. Enhanced stability of red-emitting CsPbI3:Yb3+ nanocrystal glasses: A potential luminescent material[J]. J Non-Cryst Solids, 2020, 545: 120232.

    [101] ZHANG Y, LIU J, ZHANG H, et al. Ultra-stable Tb3+:CsPbI3 nanocrystal glasses for wide-range high-sensitivity optical temperature sensing[J]. J Eur Ceram Soc, 2020, 40(15): 6023-6030.

    [102] LIU Y, CHEN W, ZHONG J, et al. Upconversion luminescence in Yb/Ln (Ln=Er, Tm) doped oxyhalide glasses containing CsPbBr3 perovskite nanocrystals[J]. J Eur Ceram Soc, 2019, 39(14): 4275-4282.

    [103] YANG Z, ZHAO L, LI M, et al. Perovskite quantum dots growth in situ in transparent medium for short wavelength shielding[J]. J Am Ceram Soc, 2020, 103(8): 4150-4158.

    [104] XU Z, LIU X, QIU J, et al. Enhanced luminescence of CsPbBr3 perovskite quantum-dot-doped borosilicate glasses with Ag nanoparticles[J]. Opt Lett, 2019, 44(22): 5626-5629.

    [105] YU M, YU X, LONG N, et al. Fabrication and microstructure of perovskite CsPbCl3 nanocrystallized chalcogenide glass-ceramics[J]. J Am Ceram Soc, 2019, 102(9): 5045-5049.

    [106] ZHANG Z, SHEN L, ZHAO Y, et al. Coexisting CsPbCl3:CsPbI3 perovskite nanocrystal glasses with high luminescence and stability[J]. Chem Eng J, 2020, 385: 123415.

    [107] YANG B, ZHENG F, MEI S, et al. Component regulation and crystallization mechanism of CsPbBr3/Cs4PbBr6 perovskite composite quantum dots-embedded borosilicate glass for light emitting application[J]. Appl Surface Sci, 2020, 512: 145655.

    [108] ZHENG F, YANG B, CAO P, et al. A novel bulk phosphor for white LDs: CsPbBr3/Cs4PbBr6 composite quantum dots-embedded borosilicate glass with high PLQY and excellent stability[J]. J Alloys Compd, 2020, 818: 153307.

    [109] DUAN Y, LI P, LU Y, et al. Double nanocrystalline engineering for effective enhanced photoluminescence of Tb3+ in glass ceramic[J]. Ceram Int, 2021, 47(11): 15219-15227.

    [110] LI X, YANG C, YU Y, et al. Dual-modal photon upconverting and downshifting emissions from ultra-stable CsPbBr3 perovskite nanocrystals triggered by co-growth of Tm: NaYbF4 nanocrystals in glass[J]. ACS Appl Mater Interfaces, 2020, 12(16): 18705-18714.

    [111] KOZLOV O V, SINGH R, AI B, et al. Transient spectroscopy of glass-embedded perovskite quantum dots: Novel structures in an old wrapping[J]. Zeitschrift für Phys Chem, 2018, 232(9-11): 1495-1511.

    [112] ZHANG W, YE Y, LIU C, et al. Revealing the effects of defects on ultrafast carrier dynamics of CsPbI3 nanocrystals in glass[J]. J Phys Chem C, 2019, 123(25): 15851-15858.

    [113] WANG C, LIN H, ZHANG Z, et al. X-ray excited CsPb(Cl,Br)3 perovskite quantum dots-glass composite with long-lifetime[J]. J Eur Ceram Soc, 2020, 40(5): 2234-2238.

    [114] ZHANG H, JIN M, LIU X, et al. The preparation and up-conversion properties of full spectrum CsPbX3 (X=Cl, Br, I) quantum dot glasses[J]. Nanoscale, 2019, 11(39): 18009-18014.

    [115] WANG Q, TONG Y, YE H, et al. Dual-protective CsPbX3 perovskite nanocomposites with improved stability for upconverted lasing and backlight displays[J]. ACS Sustain Chem Eng, 2021, 9(34): 11548-11555.

    [116] QUAN C, XING X, HUANG S, et al. Nonlinear optical properties of CsPbClxBr3-x nanocrystals embedded glass[J]. Photon Res, 2021, 9(9): 1767-1774.

    [117] XU Z, CHEN T, ZHANG D, et al. Linear and nonlinear optical characteristics of CsPbBr3 perovskite quantum dots-doped borosilicate glasses[J]. J Eur Ceram Soc, 2021, 41(1): 729-734.

    [118] LIN J, YANG C, HUANG P, et al. Photoluminescence tuning from glass-stabilized CsPbX3 (X=Cl, Br, I) perovskite nanocrystals triggered by upconverting Tm: KYb2F7 nanoparticles for high-level anti-counterfeiting[J]. Chem Eng J, 2020, 395: 125214.

    [119] KBRSL O, EROL E, ERSUNDU M , et al. Robust CsPbBr3 and CdSe/Dy3++CdSe quantum dot doped glass nanocomposite hybrid coupling as color converter for solid-state lighting applications[J]. Chem Eng J, 2021, 420: 130542.

    [120] LIN S, LIN H, CHEN G, et al. Stable CsPbBr3-glass nanocomposite for low-étendue wide-color-gamut laser-driven projection display[J]. Laser Photon Rev, 2021, 15(7): 2100044.

    [121] JIANG J, SHAO G, ZHANG Z, et al. Ultrastability and color-tunability of CsPb(Br/I)3 nanocrystals in P-Si-Zn glass for white LEDs[J]. Chem Commun, 2018, 54(87): 12302-12305.

    [122] YANG C, ZHUANG B, LIN J, et al. Ultrastable glass-protected all-inorganic perovskite quantum dots with finely tunable green emissions for approaching Rec. 2020 backlit display[J]. Chem Eng J, 2020, 398: 125616.

    [123] CHENG Y, SHEN C, SHEN L, et al. Tb3+, Eu3+ co-doped CsPbBr3 QDs glass with highly stable and luminous adjustable for white LEDs[J]. ACS Appl Mater Interfaces, 2018, 10(25): 21434-21444.

    [124] BOURZAC K. Quantum dots go on display[J]. Nature, 2013, 493(7432): 283.

    [125] GUO L, ZHANG X, ZHANG Y, et al. Color-adjustable CsPbBr3-xIx quantum dots glasses for wide color gamut display[J]. J Non-Cryst Solids, 2021, 551: 120432.

    [126] CHEN D, YUAN S, CHEN J, et al. Robust CsPbX3 (X=Cl, Br, and I) perovskite quantum dot embedded glasses: nanocrystallization, improved stability and visible full-spectral tunable emissions[J]. J Mater Chem C, 2018, 6(47): 12864-12870.

    [127] YUAN R, CHENG Y, LIU S, et al. Multicolour light-emitting diodes based on CsPbX3 (X=Br, I) quantum dots glasses solid materials[J]. Mater Lett, 2018, 229: 290-292.

    [128] DI X, HU Z, JIANG J, et al. Use of long-term stable CsPbBr3 perovskite quantum dots in phospho-silicate glass for highly efficient white LEDs[J]. Chem Commun, 2017, 53(80): 11068-11071.

    [129] MA W, JIANG T, YANG Z, et al. Highly resolved and robust dynamic X-ray imaging using perovskite glass-ceramic scintillator with reduced light scattering[J]. Adv Sci, 2021: 2003728.

    [130] Project Silica proof of concept stores Warner Bros. ‘Superman’ movie on quartz glass[EB/OL]. [2019-11-04]. https://news.microsoft.com/ innovation-stories/ignite-project-silica-superman/

    CAO Enhao, ZHOU Dacheng, LIU Ying, YANG Yong, HASSAN Babeker, WANG Qi, QIU Jianbei. Optical Properties of CsPbX3 Quantum Dots Embedded Glass-Ceramics[J]. Journal of the Chinese Ceramic Society, 2022, 50(4): 1132
    Download Citation