• Optics and Precision Engineering
  • Vol. 26, Issue 12, 3099 (2018)
YANG Zhou, MU Xiao-dong, WANG Shu-yang, and MA Chen-hui
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/ope.20182612.3099 Cite this Article
    YANG Zhou, MU Xiao-dong, WANG Shu-yang, MA Chen-hui. Scene classification of remote sensing images based on multiscale features fusion[J]. Optics and Precision Engineering, 2018, 26(12): 3099 Copy Citation Text show less
    References

    [1] PERRONNIN F, DANCE C. Fisher kernels on visual vocabularies for image categorization[C].Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on. IEEE, 2007: 1-8.

    [2] JIANG Y.Texture description based on multiresolution moments of image histograms[J]. Optical Engineering, 2008, 47(3): 037005.

    [3] VAN DE SANDE KE, GEVERS T, SNOEK CG. Evaluating color descriptors for object and scene recognition[J]. IEEE Trans Pattern Anal Mach Intell, 2010, 32(9): 1582-1596.

    [4] YANG Y, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C].Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems. ACM, 2010: 270-279.

    [5] CHENG G, GUO L, ZHAO T, et al.. Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA[J]. International Journal of Remote Sensing, 2013, 34(1): 45-59.

    [6] RAJA R, MANSOOR ROOMI S M, DHARMALAKSHMI D. Outdoor scene classification using invariant features[J]. 2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG), 2013: 1-4.

    [7] CHERIYADAT A M. Unsupervised feature learning for aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 439-451.

    [8] CHEN S, TIAN Y L. Pyramid of spatial relatons for scene-level land use classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 1947-1957.

    [9] HU F, XIA G S, WANG Z, ET AL. Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(5): 2015-2030.

    [10] ZHAO B, ZHONG Y, XIA G S, et al.. Dirichlet-derived multiple topic scene classification model fusing heterogeneous features for high spatial resolution remote sensing imagery[J]. IEEE Trans. Geosci. Remote Sens, 2016, 54(4): 2108-2123.

    [11] ABDEL H O, MOHAMED A, JIANG H, et al.. Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition[C].Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on. IEEE, 2012: 4277-4280.

    [12] KARPATHY A, TODERICI G, SHETTY S, et al.. Large-scale video classification with convolutional neural networks[C].Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2014: 1725-1732.

    [13] BALABAN S. Deep learning and face recognition: the state of the art[C].Biometric and Surveillance Technology for Human and Activity Identification XII. International Society for Optics and Photonics, 2015, 9457: 94570B.

    [14] GIRSHICK R, DONAHUE J, DARRELL T, et al.. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(1): 142-158.

    [15] ZHENG S, JAYASUMANA S, ROMERA P B, et al.. Conditional random fields as recurrent neural networks[C].Proceedings of the IEEE International Conference on Computer Vision. 2015: 1529-1537.

    [16] HE K, ZHANG X, REN S, et al.. Deep residual learning for image recognition[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.

    [17] VAKALOPOULOU M, KARANTZALOS K, KOMODAKIS N, et al.. Building detection in very high resolution multispectral data with deep learning features[C].Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International. IEEE, 2015: 1873-1876.

    [18] SZEGEDY C, LIU W, JIA Y, et al.. Going deeper with convolutions[J]. 2014: 1-9.

    [19] NOGUEIRA K, PENATTI O A B, DOS S J A. Towards better exploiting convolutional neural networks for remote sensing scene classification[J]. Pattern Recognition, 2017, 61: 539-556.

    [20] HU F, XIA G S, HU J, et al.. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery[J]. Remote Sensing, 2015, 7(11): 14680-14707.

    [21] ZHANG F, DU B, ZHANG L. Scene classification via a gradient boosting random convolutional network framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1793-1802.

    [22] ZHAO W, DU S. Scene classification using multi-scale deeply described visual words[J]. International Journal of Remote Sensing, 2016, 37(17): 4119-4131.

    [23] OTHMAN E, BAZI Y, ALAJLAN N, et al.. Using convolutional features and a sparse autoencoder for land-use scene classification[J]. International Journal of Remote Sensing, 2016, 37(10): 2149-2167.

    [24] XU S H, MU X D, ZHAO P, et al.. Scene classification of remote sensing image based on multi-scale feature and deep neural network[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(7): 834-840.(in Chinese)

    [25] WANG G, FAN B, XIANG S, et al.. Aggregating rich hierarchical features for scene classification in remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(9): 4104-4115.

    [26] LI E, XIA J, DU P, et al.. Integrating multilayer features of convolutional neural networks for remote sensing scene classific-ation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5653-5665.

    [27] HE K, ZHANG X, REN S, et al.. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Trans Pattern Anal Mach Intell, 2015, 37(9): 1904-1916.

    [28] SIVIC J, ZISSERMAN A. Video Google: A text retrieval approach to object matching in videos[C]. Proceedings of the Ninth IEEE International Conference on Computer Vision(ICCV 2003), 2003: 1470-1477.

    [29] JEGOU H, DOUZE M, SCHMID C, et al.. Aggregating local descriptors into a compact image representation[J]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 3304-3311.

    [30] WANG J, YANG J, YU K, et al.. Locality-constrained Linear Coding for image classification[J]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 3360-3367.

    [31] PERRONNIN F, S NCHEZ J, MENSINK T. Improving the fisher kernel for large-scale image classification[J]. Computer Vision - ECCV 2010, 2010: 143-156.

    [32] CHEN Z, LI J, WEI L, et al.. Multiple-kernel SVM based multiple-task oriented data mining system for gene expression data analysis[J]. Expert Systems with Applications, 2011, 38(10): 12151-12159.

    [33] SUN C J. Support vector machine based K-type kernel function[J]. Journal of Huaihai Institute of Technology (Natural Sciences Edition), 2006, 15(4): 4-7. (in Chinese)

    [34] VEDALDI A, FULKERSON B. VLFeat: An open and portable library of computer vision algorithms[C]. Proceedings of the 18th ACM international conference on Multimedia. ACM, 2010: 1469-1472.

    [35] JIA Y, SHELHAMER E, DONAHUE J, et al.. Caffe: Convolutional architecture for fast feature embedding[C]. Proceedings of the 22nd ACM international conference on Multimedia. ACM, 2014: 675-678.

    [36] CHATFIELD K, SIMONYAN K, VEDALDI A, et al.. Return of the devil in the details: delving deep into convolutional nets[J]. Proceedings of the British Machine Vision Conference, 2014.

    [37] SERMANET P, EIGEN D, ZHANG X, et al.. OverFeat: integrated recognition localization and detection using convolutional networks[Z]. Eprint Arxiv, 2013.

    [38] ZHANG F, DU B, ZHANG L. Saliency-guided unsupervised feature learning for scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2175-2184.

    [39] ZHAO B, ZHONG Y, ZHANG L, et al.. The Fisher kernel coding framework for high spatial resolution scene classification[J]. Remote Sensing, 2016, 8(2): 157.

    [40] NEGREL R, PICARD D, GOSSELIN P H. Evaluation of second-order visual features for land-use classification[C]. Content-Based Multimedia Indexing (CBMI), 2014 12th International Workshop on. IEEE, 2014: 1-5.

    [41] PENATTI O A B, NOGUEIRA K, DOS S J A. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2015: 44-51.

    [42] CASTELLUCCIO M, POGGI G, SANSONE C, et al.. Land use classification in remote sensing images by convolutional neural networks[Z]. arXiv preprint arXiv: 1508.00092, 2015.

    CLP Journals

    [1] WANG Shu-yang, MU Xiao-dong, YANG Dong-fang, HE Hao, ZHENG Yu-Hang. High-order statistics integration method for automatic building extraction of remote sensing images[J]. Optics and Precision Engineering, 2019, 27(11): 2474

    [2] HUANG Ling-xiao, LIAO Yi-peng. Recognition and multiscale equivalent morphological features extraction of flotation bubbles in NSCT domain[J]. Optics and Precision Engineering, 2020, 28(3): 704

    YANG Zhou, MU Xiao-dong, WANG Shu-yang, MA Chen-hui. Scene classification of remote sensing images based on multiscale features fusion[J]. Optics and Precision Engineering, 2018, 26(12): 3099
    Download Citation