• Chinese Journal of Lasers
  • Vol. 46, Issue 10, 1001007 (2019)
Bingyan Wang1, Yangshuai Li1、*, Panzheng Zhang1、**, Li Wang1, Qiang Liu1, Haidong Zhu1, Ailin Guo1, Yanli Zhang1, Xu Zhang1, Qiong Zhou1, Shenlei Zhou1, Jian Zhu2, Weixin Ma2, Baoqiang Zhu1, and Jianqiang Zhu1
Author Affiliations
  • 1National Laboratory on High Power Lasers and Physics, Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences, Shanghai 201800, China
  • 2Shanghai Institute of Laser Plasma, China Academy of Engineering and Physics, Shanghai 201800, China
  • show less
    DOI: 10.3788/CJL201946.1001007 Cite this Article Set citation alerts
    Bingyan Wang, Yangshuai Li, Panzheng Zhang, Li Wang, Qiang Liu, Haidong Zhu, Ailin Guo, Yanli Zhang, Xu Zhang, Qiong Zhou, Shenlei Zhou, Jian Zhu, Weixin Ma, Baoqiang Zhu, Jianqiang Zhu. Nd∶Glass Amplifier with Repetition Rate Fabricated by Flash-Lamp Pumping and Liquid Cooling Method[J]. Chinese Journal of Lasers, 2019, 46(10): 1001007 Copy Citation Text show less
    References

    [1] Spaeth M L, Manes K R, Bowers M et al. National ignition facility laser system performance[J]. Fusion Science and Technology, 69, 366-394(2016).

    [2] Manson[\s]{1}MG.[\s]{1}The[\s]{1}laser[\s]{1}megajoule[\s]{1}facility:[\s]{1}personnel[\s]{1}safety[\s]{1}system[C]∥International[\s]{1}Conference[\s]{1}on[\s]{1}Accelerator[\s]{1}and[\s]{1}Large[\s]{1}Experimental[\s]{1}Control[\s]{1}Systems,[\s]{1}October[\s]{1}8-13,[\s]{1}2017,[\s]{1}Barcelona,[\s]{1}Spain.[\s]{1}Geneva:[\s]{1}JACoW[\s]{1}Publishing,[\s]{1}2018:[\s]{1}994-[\s]{1}996.[\s]{1}

    [3] Zheng Y X, Zhu J, Qian L J et al. Investigation of “Shengguang-Ⅱ” main amplifier[J]. Chinese Journal of Lasers, 23, 289-294(1996).

    [4] Zheng W G, He S B, Zhang X M et al. Development progress for the amplifier of the SG-III laser facility[J]. Proceedings of SPIE, 3492, 586-591(1999). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=963419

    [5] Kramer K J, Latkowski J F, Abbott R P et al. Neutron transport and nuclear burn up analysis for the laser inertial confinement fusion-fission energy (LIFE) engine[J]. Fusion Science and Technology, 56, 625-631(2009). http://www.tandfonline.com/doi/ref/10.13182/FST18-8132

    [6] Bayramian A, Armstrong P, Ault E et al. The mercury project: a high average power, gas-cooled laser for inertial fusion energy development[J]. Fusion Science and Technology, 52, 383-387(2007). http://www.tandfonline.com/doi/abs/10.13182/FST07-A1517

    [7] Banerjee S, Ertel K, Mason P et al. DiPOLE: a multi-slab cryogenic diode pumped Yb∶YAG amplifier[J]. Proceedings of SPIE, 8780, 878006(2017).

    [8] Lucianetti A, Divoky M, Sawicka M et al. HiLASE cryogenically-cooled diode-pumped laser prototype for inertial fusion energy[J]. Proceedings of SPIE, 8602, 860208(2013). http://spie.org/Publications/Proceedings/Paper/10.1117/12.999957

    [9] Rus B, Bakule P, Kramer D et al. ELI-beamlines: progress in development of next generation short-pulse laser systems[J]. Proceedings of SPIE, 10241, 102410J(2017). http://spie.org/Publications/Proceedings/Paper/10.1117/12.2184996

    [10] Huang W F, Wang J F, Lu X H et al. Thermal wavefront distortion compensation in gas cooled Nd∶glass amplifier based on edge heating[J]. Chinese Journal of Lasers, 44, 0101001(2017).

    [11] Huang W F, Wang J F, Lu X H et al. LD-pumped gas-cooled multislab Nd∶glass laser amplification to joule level[J]. High Power Laser Science and Engineering, 6, e15(2018). http://www.cnki.com.cn/Article/CJFDTotal-HPLS201802003.htm

    [12] Albach D, Arzakantsyan M, Bourdet G et al. Current status of the LUCIA laser system[J]. Journal of Physics: Conference Series, 244, 032015(2010). http://adsabs.harvard.edu/abs/2010JPhCS.244c2015A

    [13] Huang T R, Huang W F, Wang J F et al. High energy diode-pumped sapphire face-cooled Nd∶glass multi-slab amplifier[J]. Optics & Laser Technology, 107, 415-423(2018). http://www.onacademic.com/detail/journal_1000040426991910_790a.html

    [14] Hu L, Chen S B, Tang J P et al. Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility[J]. High Power Laser Science and Engineering, 2, e1(2014). http://journals.cambridge.org/abstract_S2095471914000048

    [15] Papadopoulos D N, Zou J P, Le Blanc C et al. The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics[J]. High Power Laser Science and Engineering, 4, e34(2016). http://www.cnki.com.cn/Article/CJFDTOTAL-HPLS201603014.htm

    [16] Gaul E, Chériaux G, Antipenkov R, Electro-Optics: Science et al. May 13-18, 2018, San Jose, California, USA. Washington, D.C.: OSA, 2018: Stu#M., 2(2018).

    [17] Perry M D, Banks P S, Zweiback J et al. -08-30[2019-03-15]. https:∥patents.glgoo.top/patent/US6937629B2/en.(2008).

    [18] Gui L. Research on a novel fluid state laser technology[D]. Shanghai: University of Chinese Academy of Sciences, 36-44(2013).

    Bingyan Wang, Yangshuai Li, Panzheng Zhang, Li Wang, Qiang Liu, Haidong Zhu, Ailin Guo, Yanli Zhang, Xu Zhang, Qiong Zhou, Shenlei Zhou, Jian Zhu, Weixin Ma, Baoqiang Zhu, Jianqiang Zhu. Nd∶Glass Amplifier with Repetition Rate Fabricated by Flash-Lamp Pumping and Liquid Cooling Method[J]. Chinese Journal of Lasers, 2019, 46(10): 1001007
    Download Citation