[1] L. Rayleigh. Investigations in optics, with special reference to the spectroscope. London Edinburgh Philos. Mag. J. Sci., 8, 261(1879).
[2] J. Mait, R. Athale, J. van der Gracht. Evolutionary paths in imaging and recent trends. Opt. Express, 11, 2093(2003).
[3] J. Park, D. J. Brady, G. Zheng et al. Review of bio-optical imaging systems with a high space-bandwidth product. Adv. Photonics, 3, 044001(2021).
[4] A. V. Belinskii, D. N. Klyshko. Two-photon optics: diffraction, holography, and transformation of two-dimensional signals. J. Exp. Theor. Phys., 78, 259(1994).
[5] T. B. Pittman, Y. H. Shih, D. V. Strekalov et al. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A, 52, R3429(1995).
[6] M. D’Angelo, Y. H. Shih. Quantum imaging. Laser Phys. Lett., 2, 567(2005).
[7] J. H. Shapiro, R. W. Boyd. The physics of ghost imaging. Quantum Inf. Process., 11, 949(2012).
[8] A. Gatti, E. Brambilla, M. Bache et al. Ghost imaging with thermal light: comparing entanglement and classical correlation. Phys. Rev. Lett., 93, 093602(2004).
[9] A. Gatti, M. Bache, D. Magatti et al. Coherent imaging with pseudo-thermal incoherent light. J. Mod. Opt., 53, 739(2006).
[10] A. Valencia, G. Scarcelli, M. D’Angelo et al. Two-photon imaging with thermal light. Phys. Rev. Lett., 94, 063601(2005).
[11] D. Zhang, Y.-H. Zhai, L.-A. Wu et al. Correlated two-photon imaging with true thermal light. Opt. Lett., 30, 2354(2005).
[12] J. Cheng, S. Han. Incoherent coincidence imaging and its applicability in X-ray diffraction. Phys. Rev. Lett., 92, 093903(2004).
[13] M. Zhang, Q. Wei, X. Shen et al. Lensless Fourier-transform ghost imaging with classical incoherent light. Phys. Rev. A, 75, 021803(2007).
[14] J. H. Shapiro. Computational ghost imaging. Phys. Rev. A, 78, 061802(2008).
[15] Y. Bromberg, O. Katz, Y. Silberberg. Ghost imaging with a single detector. Phys. Rev. A, 79, 053840(2009).
[16] D.-Z. Cao, J. Xiong, K. Wang. Geometrical optics in correlated imaging systems. Phys. Rev. A, 71, 013801(2005).
[17] D. V. Strekalov, A. V. Sergienko, D. N. Klyshko et al. Observation of two-photon ‘ghost’ interference and diffraction. Phys. Rev. Lett., 74, 3600(1995).
[18] F. Ferri, D. Magatti, A. Gatti et al. High-resolution ghost image and ghost diffraction experiments with thermal light. Phys. Rev. Lett., 94, 183602(2005).
[19] J. Cheng. Ghost imaging through turbulent atmosphere. Opt. Express, 17, 7916(2009).
[20] P. Zhang, W. Gong, X. Shen et al. Correlated imaging through atmospheric turbulence. Phys. Rev. A, 82, 033817(2010).
[21] N. D. Hardy, J. H. Shapiro. Reflective ghost imaging through turbulence. Phys. Rev. A, 84, 063824(2011).
[22] Y.-K. Xu, W.-T. Liu, E.-F. Zhang et al. Is ghost imaging intrinsically more powerful against scattering?. Opt. Express, 23, 32993(2015).
[23] W. Gong, S. Han. Correlated imaging in scattering media. Opt. Lett., 36, 394(2011).
[24] M. Bina, D. Magatti, M. Molteni et al. Backscattering differential ghost imaging in turbid media. Phys. Rev. Lett., 110, 083901(2013).
[25] W. Gong. Disturbance-free single-pixel imaging camera via complementary detection. Opt. Express, 31, 30505(2023).
[26] L. Li, Q. Li, S. Sun et al. Imaging through scattering layers exceeding memory effect range with spatial-correlation-achieved point-spread-function. Opt. Lett., 43, 1670(2018).
[27] J. Bertolotti, E. G. Van Putten, C. Blum et al. Non-invasive imaging through opaque scattering layers. Nature, 491, 232(2012).
[28] D. Li, D. Yang, S. Sun et al. Enhancing robustness of ghost imaging against environment noise via cross-correlation in time domain. Opt. Express, 29, 31068(2021).
[29] Z. Li, Q. Zhao, W. Gong. Experimental investigation of ghost imaging in background light environments. J. Opt., 22, 025201(2020).
[30] C. Deng, L. Pan, C. Wang et al. Performance analysis of ghost imaging lidar in background light environment. Photonics Res., 5, 431(2017).
[31] D. Shi, S. Hu, Y. Wang. Polarimetric ghost imaging. Opt. Lett., 39, 1231(2014).
[32] X. Xiao, S. Sun, H.-Z. Lin et al. Ghost imaging utilizing experimentally acquired degree of linear polarization with no prior information. Opt. Express, 27, 28457(2019).
[33] L. Bian, J. Suo, G. Situ et al. Multispectral imaging using a single bucket detector. Sci. Rep., 6, 24752(2016).
[34] P. Ryczkowski, M. Barbier, A. T. Friberg et al. Ghost imaging in the time domain. Nat. Photonics, 10, 167(2016).
[35] F. Devaux, P.-A. Moreau, S. Denis et al. Computational temporal ghost imaging. Optica, 3, 698(2016).
[36] Y.-K. Xu, S.-H. Sun, W.-T. Liu et al. Detecting fast signals beyond bandwidth of detectors based on computational temporal ghost imaging. Opt. Express, 26, 99(2018).
[37] C. Deng, W. Gong, S. Han. Pulse-compression ghost imaging lidar via coherent detection. Opt. Express, 24, 25983(2016).
[38] L. Pan, Y. Wang, C. Deng et al. Micro-Doppler effect based vibrating object imaging of coherent detection GISC lidar. Opt. Express, 29, 43022(2021).
[39] C. Yang, F. Cao, D. Qi et al. Hyperspectrally compressed ultrafast photography. Phys. Rev. Lett., 124, 023902(2020).
[40] Z. Liu, S. Tan, J. Wu et al. Spectral camera based on ghost imaging via sparsity constraints. Sci. Rep., 6, 25718(2016).
[41] S. Sun, H. Lin, Y. Xu et al. Tracking and imaging of moving objects with temporal intensity difference correlation. Opt. Express, 27, 27851(2019).
[42] S. Sun, H.-K. Hu, Y.-K. Xu et al. Simultaneously tracking and imaging a moving object under photon crisis. Phys. Rev. Appl., 17, 024050(2022).
[43] Z. Zhang, X. Ma, J. Zhong. Single-pixel imaging by means of Fourier spectrum acquisition. Nat. Commun., 6, 6225(2015).
[44] Z. Zhang, X. Wang, G. Zheng et al. Fast Fourier single-pixel imaging via binary illumination. Sci. Rep., 7, 12029(2017).
[45] J. Huang, D. Shi, K. Yuan et al. Computational-weighted Fourier single-pixel imaging via binary illumination. Opt. Express, 26, 16547(2018).
[46] R. H. Brown, R. Q. Twiss. Correlation between photons in two coherent beams of light. Nature, 177, 27(1956).
[47] R. J. Glauber. The quantum theory of optical coherence. Phys. Rev., 130, 2529(1963).
[48] Y.-H. Zhai, X.-H. Chen, D. Zhang et al. Two-photon interference with true thermal light. Phys. Rev. A, 72, 043805(2005).
[49] X.-H. Chen, Q. Liu, K.-H. Luo et al. Lensless ghost imaging with true thermal light. Opt. Lett., 34, 695(2009).
[50] X.-F. Liu, X.-H. Chen, X.-R. Yao et al. Lensless ghost imaging with sunlight. Opt. Lett., 39, 2314(2014).
[51] A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko et al. Role of entanglement in two-photon imaging. Phys. Rev. Lett., 87, 123602(2001).
[52] R. S. Bennink, S. J. Bentley, R. W. Boyd et al. Quantum and classical coincidence imaging. Phys. Rev. Lett., 92, 033601(2004).
[53] G. Scarcelli, V. Berardi, Y. Shih. Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?. Phys. Rev. Lett., 96, 063602(2006).
[54] A. Gatti, M. Bondani, L. A. Lugiato et al. Comment on ‘Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?. Phys. Rev. Lett., 98, 039301(2007).
[55] G. Scarcelli, V. Berardi, Y. H. Shih. Scarcelli, Berardi, and Shih reply. Phys. Rev. Lett., 98, 039302(2007).
[56] B. I. Erkmen, J. H. Shapiro. Ghost imaging: from quantum to classical to computational. Adv. Opt. Photonics, 2, 405(2010).
[57] H. Yu, R. Lu, S. Han et al. Fourier-transform ghost imaging with hard X rays. Phys. Rev. Lett., 117, 113901(2016).
[58] D. Pelliccia, A. Rack, M. Scheel et al. Experimental X-ray ghost imaging. Phys. Rev. Lett., 117, 113902(2016).
[59] A.-X. Zhang, Y.-H. He, L.-A. Wu et al. Tabletop X-ray ghost imaging with ultra-low radiation. Optica, 5, 374(2018).
[60] H.-C. Liu, S. Zhang. Computational ghost imaging of hot objects in long-wave infrared range. Appl. Phys. Lett., 111, 031110(2017).
[61] W. L. Chan, K. Charan, D. Takhar et al. A single-pixel terahertz imaging system based on compressed sensing. Appl. Phys. Lett., 93, 121105(2008).
[62] X. Wang, Z. Lin. Nonrandom microwave ghost imaging. IEEE Trans. Geosci. Remote Sens., 56, 4747(2018).
[63] M. D’Angelo, M. V. Chekhova, Y. Shih. Two-photon diffraction and quantum lithography. Phys. Rev. Lett., 87, 013602(2001).
[64] K. Wang, D.-Z. Cao. Subwavelength coincidence interference with classical thermal light. Phys. Rev. A, 70, 041801(2004).
[65] Y. Cai, S.-Y. Zhu. Ghost interference with partially coherent radiation. Opt. Lett., 29, 2716(2004).
[66] G. Scarcelli, A. Valencia, Y. Shih. Two-photon interference with thermal light. Europhys. Lett., 68, 618(2004).
[67] J. Xiong, D.-Z. Cao, F. Huang et al. Experimental observation of classical subwavelength interference with a pseudothermal light source. Phys. Rev. Lett., 94, 173601(2005).
[68] W. Gong, P. Zhang, X. Shen et al. Ghost ‘pinhole’ imaging in Fraunhofer region. Appl. Phys. Lett., 95, 071110(2009).
[69] P. Clemente, V. Durán, E. Tajahuerce et al. Single-pixel digital ghost holography. Phys. Rev. A, 86, 041803(2012).
[70] P. Clemente, V. Durán, E. Tajahuerce et al. Compressive holography with a single-pixel detector. Opt. Lett., 38, 2524(2013).
[71] L. Martínez-León, P. Clemente, Y. Mori et al. Single-pixel digital holography with phase-encoded illumination. Opt. Express, 25, 4975(2017).
[72] T. Aidukas, P. C. Konda, A. R. Harvey et al. Phase and amplitude imaging with quantum correlations through Fourier ptychography. Sci. Rep., 9, 10445(2019).
[73] M. Li, L. Bian, G. Zheng et al. Single-pixel ptychography. Opt. Lett., 46, 1624(2021).
[74] Z. Ye, H.-B. Wang, J. Xiong et al. Ghost panorama using a convex mirror. Opt. Lett., 46, 5389(2021).
[75] T. Shirai, T. Setälä, A. T. Friberg. Ghost imaging of phase objects with classical incoherent light. Phys. Rev. A, 84, 041801(2011).
[76] K. Komuro, Y. Yamazaki, T. Nomura. Transport-of-intensity computational ghost imaging. Appl. Opt., 57, 4451(2018).
[77] B. Sephton, I. Nape, C. Moodley et al. Revealing the embedded phase in single-pixel quantum ghost imaging. Optica, 10, 286(2023).
[78] S. Chang, J. Cai, W. Gong. High-quality coherent ghost imaging of a transmission target. Opt. Express, 32, 10093(2024).
[79] M. P. Edgar, G. M. Gibson, M. J. Padgett. Principles and prospects for single-pixel imaging. Nat. Photonics, 13, 13(2018).
[80] C. Zhao, W. Gong, M. Chen et al. Ghost imaging lidar via sparsity constraints. Appl. Phys. Lett., 101, 141123(2012).
[81] B. I. Erkmen. Computational ghost imaging for remote sensing. J. Opt. Soc. Am. A, 29, 782(2012).
[82] M. Chen, E. Li, W. Gong et al. Ghost imaging lidar via sparsity constraints in real atmosphere. Opt. Photonics J., 3, 83(2013).
[83] C. Wang, X. Mei, L. Pan et al. NIR 3D GISC lidar on a balloon-borne platform. Imaging and Applied Optics 2017 (3D, AIO, COSI, IS, MATH, pcAOP)(2017).
[84] C. Wang, X. Mei, L. Pan et al. Airborne near infrared three-dimensional ghost imaging LiDAR via sparsity constraint. Remote Sens., 10, 732(2018).
[85] X. Mei, C. Wang, L. Pan et al. Experimental demonstration of vehicle-borne near infrared three-dimensional ghost imaging LiDAR. Conference on Lasers and Electro-Optics(2019).
[86] X. Liu, J. Shi, X. Wu et al. Fast first-photon ghost imaging. Sci. Rep., 8, 5012(2018).
[87] X. Liu, J. Shi, L. Sun et al. Photon-limited single-pixel imaging. Opt. Express, 28, 8132(2020).
[88] S. Sun, J.-H. Gu, H.-Z. Lin et al. Gradual ghost imaging of moving objects by tracking based on cross correlation. Opt. Lett., 44, 5594(2019).
[89] L.-K. Du, S. Sun, L. Jiang et al. Information segregating towards simultaneous tracking and imaging based on ghost imaging. Phys. Rev. Appl., 19, 054014(2023).
[90] B. Sun, M. P. Edgar, R. Bowman et al. 3D computational imaging with single-pixel detectors. Science, 340, 844(2013).
[91] H. Yu, E. Li, W. Gong et al. Structured image reconstruction for three-dimensional ghost imaging lidar. Opt. Express, 23, 14541(2015).
[92] W. Gong, C. Zhao, H. Yu et al. Three-dimensional ghost imaging lidar via sparsity constraint. Sci. Rep., 6, 26133(2016).
[93] M.-J. Sun, M. P. Edgar, G. M. Gibson et al. Single-pixel three-dimensional imaging with time-based depth resolution. Nat. Commun., 7, 12010(2016).
[94] Y. Zhang, M. P. Edgar, B. Sun et al. 3D single-pixel video. J. Opt., 18, 035203(2016).
[95] E. Salvador-Balaguer, P. Latorre-Carmona, C. Chabert et al. Low-cost single-pixel 3D imaging by using an LED array. Opt. Express, 26, 15623(2018).
[96] D. Stellinga, D. B. Phillips, S. P. Mekhail et al. Time-of-flight 3D imaging through multimode optical fibers. Science, 374, 1395(2021).
[97] M.-J. Sun, J.-M. Zhang. Single-pixel imaging and its application in three-dimensional reconstruction: a brief review. Sensors, 19, 732(2019).
[98] S. Ota, R. Horisaki, Y. Kawamura et al. Ghost cytometry. Science, 360, 1246(2018).
[99] V. Studer, J. Bobin, M. Chahid et al. Compressive fluorescence microscopy for biological and hyperspectral imaging. Proc. Natl. Acad. Sci. USA, 109, E1679(2012).
[100] N. Radwell, K. J. Mitchell, G. M. Gibson et al. Single-pixel infrared and visible microscope. Optica, 1, 285(2014).
[101] W. Li, Z. Tong, K. Xiao et al. Single-frame wide-field nanoscopy based on ghost imaging via sparsity constraints. Optica, 6, 1515(2019).
[102] Y. Liu, J. Suo, Y. Zhang et al. Single-pixel phase and fluorescence microscope. Opt. Express, 26, 32451(2018).
[103] O. Denk, A. Musiienko, K. Žídek. Differential single-pixel camera enabling low-cost microscopy in near-infrared spectral region. Opt. Express, 27, 4562(2019).
[104] R. V. Vinu, Z. Chen, R. K. Singh et al. Ghost diffraction holographic microscopy. Optica, 7, 1697(2020).
[105] M. Yao, Z. Cai, X. Qiu et al. Full-color light-field microscopy via single-pixel imaging. Opt. Express, 28, 6521(2020).
[106] J. Peng, M. Yao, Z. Huang et al. Fourier microscopy based on single-pixel imaging for multi-mode dynamic observations of samples. APL Photonics, 6, 046102(2021).
[107] D. Wu, J. Luo, G. Huang et al. Imaging biological tissue with high-throughput single-pixel compressive holography. Nat. Commun., 12, 4712(2021).
[108] P. Clemente, V. Durán, V. Torres-Company et al. Optical encryption based on computational ghost imaging. Opt. Lett., 35, 2391(2010).
[109] J. Wu, Z. Xie, Z. Liu et al. Multiple-image encryption based on computational ghost imaging. Opt. Commun., 359, 38(2016).
[110] S. Li, X.-R. Yao, W.-K. Yu et al. High-speed secure key distribution over an optical network based on computational correlation imaging. Opt. Lett., 38, 2144(2013).
[111] Z. Zhang, S. Jiao, M. Yao et al. Secured single-pixel broadcast imaging. Opt. Express, 26, 14578(2018).
[112] S. Jiao, J. Feng, Y. Gao et al. Visual cryptography in single-pixel imaging. Opt. Express, 28, 7301(2020).
[113] S. Zhao, L. Wang, W. Liang et al. High performance optical encryption based on computational ghost imaging with QR code and compressive sensing technique. Opt. Commun., 353, 90(2015).
[114] L. Sui, C. Du, M. Xu et al. Information encryption based on the customized data container under the framework of computational ghost imaging. Opt. Express, 27, 16493(2019).
[115] X. Chen, M. Jin, H. Chen et al. Computational temporal ghost imaging for long-distance underwater wireless optical communication. Opt. Lett., 46, 1938(2021).
[116] M. D’Angelo, A. Valencia, M. H. Rubin et al. Resolution of quantum and classical ghost imaging. Phys. Rev. A, 72, 013810(2005).
[117] K.-H. Luo, B.-Q. Huang, W.-M. Zheng et al. Nonlocal imaging by conditional averaging of random reference measurements. Chin. Phys. Lett., 29, 074216(2012).
[118] H. Yang, S. Wu, H.-B. Wang et al. Probability theory in conditional-averaging ghost imaging with thermal light. Phys. Rev. A, 98, 053853(2018).
[119] F. Ferri, D. Magatti, L. A. Lugiato et al. Differential ghost imaging. Phys. Rev. Lett., 104, 253603(2010).
[120] B. Sun, S. S. Welsh, M. P. Edgar et al. Normalized ghost imaging. Opt. Express, 20, 16892(2012).
[121] S. Sun, W.-T. Liu, J.-H. Gu et al. Ghost imaging normalized by second-order coherence. Opt. Lett., 44, 5993(2019).
[122] O. Katz, Y. Bromberg, Y. Silberberg. Compressive ghost imaging. Appl. Phys. Lett., 95, 131110(2009).
[123] W.-K. Yu, M.-F. Li, X.-R. Yao et al. Adaptive compressive ghost imaging based on wavelet trees and sparse representation. Opt. Express, 22, 7133(2014).
[124] M. Aβmann, M. Bayer. Compressive adaptive computational ghost imaging. Sci. Rep., 3, 1545(2013).
[125] M.-J. Sun, L.-T. Meng, M. P. Edgar et al. A Russian dolls ordering of the Hadamard basis for compressive single-pixel imaging. Sci. Rep., 7, 3464(2017).
[126] M. F. Duarte, M. Davenport, D. Takhar et al. Single-pixel imaging via compressive sampling. IEEE Signal Process Mag., 25, 83(2008).
[127] M. Lyu, W. Wang, H. Wang et al. Deep-learning-based ghost imaging. Sci. Rep., 7, 17865(2017).
[128] F. Wang, C. Wang, M. Chen et al. Far-field super-resolution ghost imaging with a deep neural network constraint. Light Sci. Appl., 11, 1(2022).
[129] H.-K. Hu, S. Sun, H.-Z. Lin et al. Denoising ghost imaging under a small sampling rate via deep learning for tracking and imaging moving objects. Opt. Express, 28, 37284(2020).
[130] S. M. M. Khamoushi, Y. Nosrati, S. H. Tavassoli. Sinusoidal ghost imaging. Opt. Lett., 40, 3452(2015).
[131] Z. Zhang, X. Wang, G. Zheng et al. Hadamard single-pixel imaging versus Fourier single-pixel imaging. Opt. Express, 25, 19619(2017).
[132] L. Wang, S. Zhao. Fast reconstructed and high-quality ghost imaging with fast Walsh–Hadamard transform. Photonics Res., 4, 240(2016).
[133] P. Kilcullen, T. Ozaki, J. Liang. Compressed ultrahigh-speed single-pixel imaging by swept aggregate patterns. Nat. Commun., 13, 7879(2022).
[134] Q. Li, Z. Duan, H. Lin et al. Coprime-frequencied sinusoidal modulation for improving the speed of computational ghost imaging with a spatial light modulator. Chin. Opt. Lett., 14, 111103(2016).
[135] E. F. Zhang, W.-T. Liu, P. Chen. Ghost imaging with non-negative exponential speckle patterns. J. Opt., 17, 085602(2015).
[136] Y. Zhang, Y. Zhang, C. Chang et al. Multiple description coding ghost imaging. Front. Phys., 11, 1277299(2023).
[137] X. Nie, F. Yang, X. Liu et al. Noise-robust computational ghost imaging with pink noise speckle patterns. Phys. Rev. A, 104, 013513(2021).
[138] P. G. Vaz, D. Amaral, L. F. Requicha Ferreira et al. Image quality of compressive single-pixel imaging using different Hadamard orderings. Opt. Express, 28, 11666(2020).
[139] W.-K. Yu. Super sub-Nyquist single-pixel imaging by means of cake-cutting Hadamard basis sort. Sensors, 19, 4122(2019).
[140] L. López-García, W. Cruz-Santos, A. García-Arellano et al. Efficient ordering of the Hadamard basis for single pixel imaging. Opt. Express, 30, 13714(2022).
[141] X. Yu, R. I. Stantchev, F. Yang et al. Super sub-Nyquist single-pixel imaging by total variation ascending ordering of the Hadamard basis. Sci. Rep., 10, 9338(2020).
[142] D. B. Phillips, M.-J. Sun, J. M. Taylor et al. Adaptive foveated single-pixel imaging with dynamic supersampling. Sci. Adv., 3, e1601782(2017).
[143] S. Sun, W.-T. Liu, H.-Z. Lin et al. Multi-scale adaptive computational ghost imaging. Sci. Rep., 6, 37013(2016).
[144] F. Rousset, N. Ducros, A. Farina et al. Adaptive basis scan by wavelet prediction for single-pixel imaging. IEEE Trans. Comput. Imaging, 3, 36(2016).
[145] B. Liu, F. Wang, C. Chen et al. Self-evolving ghost imaging. Optica, 8, 1340(2021).
[146] L.-K. Du, C. Hu, S. Liu et al. Bayesian recursive information optical imaging: a ghost imaging scheme based on Bayesian filtering(2023).
[147] J. Gu, S. Sun, Y. Xu et al. Feedback ghost imaging by gradually distinguishing and concentrating onto the edge area. Chin. Opt. Lett., 19, 041102(2021).
[148] H. Jiang, S. Zhu, H. Zhao et al. Adaptive regional single-pixel imaging based on the Fourier slice theorem. Opt. Express, 25, 15118(2017).
[149] W. Huang, F. Wang, X. Zhang et al. Learning-based adaptive under-sampling for Fourier single-pixel imaging. Opt. Lett., 48, 2985(2023).
[150] D.-Z. Cao, J. Xiong, S.-H. Zhang et al. Enhancing visibility and resolution in Nth-order intensity correlation of thermal light. Appl. Phys. Lett., 92, 201102(2008).
[151] C. Zhang, S. Guo, J. Cao et al. Object reconstitution using pseudo-inverse for ghost imaging. Opt. Express, 22, 30063(2014).
[152] B. Luo, P. Yin, L. Yin et al. Orthonormalization method in ghost imaging. Opt. Express, 26, 23093(2018).
[153] W. Gong, S. Han. Experimental investigation of the quality of lensless super-resolution ghost imaging via sparsity constraints. Phys. Lett. A, 376, 1519(2012).
[154] Z. Li, Q. Zhao, W. Gong. Performance comparison of ghost imaging versus conventional imaging in photon shot noise cases. Chin. Opt. Lett., 18, 071101(2020).
[155] C. Wang, W. Gong, X. Shao et al. The influence of the property of random coded patterns on fluctuation-correlation ghost imaging. J. Opt., 18, 065703(2016).
[156] J. W. Goodman. Introduction to Fourier Optics(2005).
[157] Z. Li, Q. Zhao, W. Gong. Performance comparison of ghost imaging versus conventional imaging in photon shot noise cases. Chin. Opt. Lett., 18, 071101(2020).
[158] Z. Wang, E. P. Simoncelli, A. C. Bovik. Multiscale structural similarity for image quality assessment. The Thirty-Seventh Asilomar Conference on Signals, Systems & Computers(2003).
[159] K. Wai, C. Chan, M. N. O’Sullivan et al. Optimization of thermal ghost imaging: high-order correlations vs background subtraction. Opt. Express, 18, 5562(2010).
[160] R. D. Richmond, S. C. Cain. Direct-Detection LADAR Systems(2009).
[161] S.-E. Qian. Hyperspectral satellites, evolution, and development history. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14, 7032(2021).
[162] Y. Shi. A glimpse of structural biology through X-ray crystallography. Cell, 159, 995(2014).
[163] J. Miao, P. Charalambous, J. Kirz et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature, 400, 342(1999).
[164] E. J. Candès, M. B. Wakin. An introduction to compressive sampling. IEEE Signal Process Mag., 25, 21(2008).
[165] D.-J. Zhang, H.-G. Li, Q.-L. Zhao et al. Wavelength-multiplexing ghost imaging. Phys. Rev. A, 92, 013823(2015).
[166] C. Deng, J. Suo, Y. Wang et al. Single-shot thermal ghost imaging using wavelength-division multiplexing. Appl. Phys. Lett., 112, 051107(2018).
[167] D. Shi, J. Zhang, J. Huang et al. Polarization-multiplexing ghost imaging. Opt. Lasers Eng., 102, 100(2018).
[168] P. Sheng, B. van Tiggelen. Introduction to Wave Scattering, Localization and Mesoscopic Phenomena(2007).
[169] P. Sebbah. Waves and Imaging through Complex Media(2012).
[170] L. Pan, C. Deng, Z. Bo et al. Experimental investigation of chirped amplitude modulation heterodyne ghost imaging. Opt. Express, 28, 20808(2020).
[171] Y. Kohno, K. Komatsu, R. Tang et al. Ghost imaging using a large-scale silicon photonic phased array chip. Opt. Express, 27, 3817(2019).
[172] C. Liu, J. Chen, J. Liu et al. High frame-rate computational ghost imaging system using an optical fiber phased array and a low-pixel APD array. Opt. Express, 26, 10048(2018).
[173] E. F. Zhang, H. Lin, W.-T. Liu et al. Sub-Rayleigh-diffraction imaging via modulating classical light. Opt. Express, 23, 33506(2015).
[174] S. Liu, C. Deng, C. Wang et al. Microvibration modes reconstruction based on micro-Doppler coincidence imaging. IEEE Trans. Geosci. Remote Sens., 60, 2008316(2022).
[175] L. He, S. Sun, C. Chang et al. Robust bistatic ghost imaging with no physical synchronization. Opt. Express, 32, 12656(2024).
[176] A. A. Wagadarikar, D. L. Marks, K. Choi et al. Imaging through turbulence using compressive coherence sensing. Opt. Lett., 35, 838(2010).
[177] R. E. Meyers, K. S. Deacon, Y. Shih. Turbulence-free ghost imaging. Appl. Phys. Lett., 98, 111115(2011).
[178] Y. Xiao, L. Zhou, W. Chen. High-resolution ghost imaging through complex scattering media via a temporal correction. Opt. Lett., 47, 3692(2022).
[179] Y. Li, M. Chen, J. Qi et al. Underwater ghost imaging with detection distance up to 9.3 attenuation lengths. Opt. Express, 31, 38457(2023).
[180] D. Zhang, W. Sheng, Y. Shi et al. Imaging objects hidden inside the strongly scattering media based on bidirectional ghost imaging. Opt. Lett., 49, 13(2023).
[181] C. Zhang, W. Gong, S. Han. Ghost imaging for moving targets and its application in remote sensing. Chin. J. Lasers, 39, 1214003(2012).
[182] L. Zha, D. Shi, J. Huang et al. Single-pixel tracking of fast-moving object using geometric moment detection. Opt. Express, 29, 30327(2021).
[183] Y. Zhang, H. Wang, Y. Yin et al. Mask-based single-pixel tracking and imaging for moving objects. Opt. Express, 31, 32554(2023).
[184] Y. Shih. The Physics of Ghost Imaging(2011).
[185] M. J. Padgett, R. W. Boyd. An introduction to ghost imaging: quantum and classical. Philos. Trans. R. Soc. A, 375, 20160233(2017).
[186] S. Han, H. Yu, X. Shen et al. A review of ghost imaging via sparsity constraints. Appl. Sci., 8, 1379(2018).
[187] H. Peng, Z. Yang, D. Li et al. The application of ghost imaging in infrared imaging detection technology. Proc. SPIE, 9795, 97952O(2015).
[188] D. Shrekenhamer, C. M. Watts, W. J. Padilla. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator. Opt. Express, 21, 12507(2013).
[189] L. Olivieri, L. Peters, V. Cecconi et al. Terahertz nonlinear ghost imaging via plane decomposition: toward near-field micro-volumetry. ACS Photonics, 10, 1726(2023).
[190] Z. Zhang, R. Luo, X. Wang et al. Microwave ghost imaging via LTE-DL signals. International Conference on Radar (RADAR)(2018).
[191] M. F. Imani, D. R. Smith. Temporal microwave ghost imaging using a reconfigurable disordered cavity. Appl. Phys. Lett., 116, 054102(2020).
[192] Y.-H. He, A.-X. Zhang, M.-F. Li et al. High-resolution sub-sampling incoherent X-ray imaging with a single-pixel detector. APL Photonics, 5, 056102(2020).
[193] R. Khakimov, B. M. Henson, D. Shin et al. Ghost imaging with atoms. Nature, 540, 100(2016).
[194] S. S. Hodgman, W. Bu, S. B. Mann et al. Higher-order quantum ghost imaging with ultracold atoms. Phys. Rev. Lett., 122, 233601(2019).
[195] A. M. Kingston, G. R. Myers, D. Pelliccia et al. Neutron ghost imaging. Phys. Rev. A, 101, 053844(2020).
[196] Y.-H. He, Y.-Y. Huang, Z.-R. Zeng et al. Single-pixel imaging with neutrons. Science Bulletin, 66, 133(2021).
[197] D. Faccio. Optical communications: temporal ghost imaging. Nat. Photonics, 10, 150(2016).
[198] W. Chen, M.-J. Sun, W.-J. Deng et al. Hyperspectral imaging via a multiplexing digital micromirror device. Opt. Lasers Eng., 151, 106889(2022).
[199] A. Chiuri, F. Angelini, S. Santoro et al. Quantum ghost imaging spectrometer. ACS Photonics, 10, 4299(2023).
[200] C. Chu, S. Liu, Z. Liu et al. Spectral polarization camera based on ghost imaging via sparsity constraints. Appl. Opt., 60, 4632(2021).
[201] W. Gong, S. Han. A method to improve the visibility of ghost images obtained by thermal light. Phys. Lett. A, 374, 1005(2010).
[202] X.-B. Song, D.-Q. Xu, H.-B. Wang et al. Experimental observation of one-dimensional quantum holographic imaging. Appl. Phys. Lett., 103, 131111(2013).
[203] K. Li, J. Laksman, T. Mazza et al. Ghost-imaging-enhanced noninvasive spectral characterization of stochastic X-ray free-electron-laser pulses. Commun. Phys., 5, 191(2022).
[204] H. Huang, L. Li, Y. Ma et al. 25,000 fps computational ghost imaging with ultrafast structured illumination. Electron. Mater., 3, 93(2022).
[205] C. Hu, S. Han. On ghost imaging studies for information optical imaging. Appl. Sci., 12, 10981(2022).
[206] M. Tsang, R. Nair, X.-M. Lu. Quantum theory of superresolution for two incoherent optical point sources. Phys. Rev. X, 6, 031033(2016).
[207] M. Tsang. Conservative classical and quantum resolution limits for incoherent imaging. J. Mod. Opt., 65, 1385(2017).
[208] Z. Tong, Z. Liu, J. Wang et al. Breaking Rayleigh’s criterion via discernibility in high-dimensional light-field space with snapshot ghost imaging(2020).
[209] T. Xiao, X. Zhai, X. Wu et al. Practical advantage of quantum machine learning in ghost imaging. Commun. Phys., 6, 171(2023).
[210] F. Aieta, M. A. Kats, P. Genevet et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 347, 1342(2015).
[211] H. Kwon, E. Arbabi, S. M. Kamali et al. Computational complex optical field imaging using a designed metasurface diffuser. Optica, 5, 924(2018).
[212] H.-C. Liu, B. Yang, Q. Guo et al. Single-pixel computational ghost imaging with helicity-dependent metasurface hologram. Sci. Adv., 3, e1701477(2017).
[213] R. Zhu, H. Yu, Z. Tan et al. Ghost imaging based on Y-net: a dynamic coding and decoding approach. Opt. Express, 28, 17556(2020).
[214] X. Zhai, X. Wu, Y. Sun et al. Theory and approach of single-pixel imaging [Invited]. Infrared Laser Eng., 50, 20211061(2021).
[215] S. Sun, L. Du, D. Li et al. Progress and prospect of ghost imaging in extremely weak light [Invited]. Infrared Laser Eng., 50, 20210819(2021).
[216] Z. Liu, C. Hu, Z. Tong et al. Some research progress on the theoretical study of ghost imaging in Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences [Invited]. Infrared Laser Eng., 50, 20211059(2021).
[217] W. Liu, S. Sun, H. Hu et al. Progress and prospect for ghost imaging of moving objects. Laser Optoelectron. Prog., 58, 1011001(2021).
[218] M. Shi, J. Cao, H. Cui et al. Advances in ghost imaging of moving targets: a review. Biomimetics, 8, 435(2023).