• Chinese Journal of Lasers
  • Vol. 44, Issue 6, 602003 (2017)
Zhao Weina1、2、*, Huang Yihui3, Song Hongwei1、2, and Huang Chenguang1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/cjl201744.0602003 Cite this Article Set citation alerts
    Zhao Weina, Huang Yihui, Song Hongwei, Huang Chenguang. Multi-Scale Analysis Model of Thermal-Mechanical Damage Effect in High-Power Continuous-Wave Laser Irradiation of CFRP Laminates[J]. Chinese Journal of Lasers, 2017, 44(6): 602003 Copy Citation Text show less

    Abstract

    A multi-scale analysis model which can reflect thermal-mechanical damage effects, such as ablation, pyrolysis and delamination within layers in the high-power continuous-wave laser irradiation of carbon fiber reinforced polymer (CFRP) laminates is built. The pyrolysis kinetic equations of fibers and matrices are derived from the meso-scale analysis, and the pyrolysis kinetic parameters are obtained from the thermo-gravimetric analysis, thereafter the macroscopic thermal-physical and mechanical property parameters of CFRP laminates are obtained. Based on the cohesive model, an analysis model is built to describe the laser induced delamination behavior within layers. Meanwhile, a thermal-resistance model is also proposed and built to describe the attenuation of thermal energy due to pyrolysis and delamination within layers. By combining the thermal-mechanical property parameters obtained from the multi-scale model with the thermal-mechanical numerical model, the ablation, pyrolysis and delamination within layers of CFRP laminates irradiated by high-power continuous-wave lasers can be simulated. The numerical results show good agreement with the experimental data.
    Zhao Weina, Huang Yihui, Song Hongwei, Huang Chenguang. Multi-Scale Analysis Model of Thermal-Mechanical Damage Effect in High-Power Continuous-Wave Laser Irradiation of CFRP Laminates[J]. Chinese Journal of Lasers, 2017, 44(6): 602003
    Download Citation