• Chinese Journal of Lasers
  • Vol. 49, Issue 20, 2007103 (2022)
Biao Dong1, Lihua Guo1, Dayong Liu1, Yuda Wang2, Wei Liu1, Rui Yang1, Haitao He2, and Jiao Sun2、*
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, Jilin, China
  • 2Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin, China
  • show less
    DOI: 10.3788/CJL202249.2007103 Cite this Article Set citation alerts
    Biao Dong, Lihua Guo, Dayong Liu, Yuda Wang, Wei Liu, Rui Yang, Haitao He, Jiao Sun. Progress in Tumor Biomarker Detection Based on Fluorescence Method[J]. Chinese Journal of Lasers, 2022, 49(20): 2007103 Copy Citation Text show less
    References

    [1] Hanahan D, Weinberg R A. Hallmarks of cancer: the next generation[J]. Cell, 144, 646-674(2011).

    [2] Sung H, Ferlay J, Siegel R L et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA-A Cancer Journal for Clinicians, 71, 209-249(2021).

    [3] Das P, Sedighi A, Krull U J. Cancer biomarker determination by resonance energy transfer using functional fluorescent nanoprobes[J]. Analytica Chimica Acta, 1041, 1-24(2018).

    [4] Wu L, Qu X G. Cancer biomarker detection: recent achievements and challenges[J]. Chemical Society Reviews, 44, 2963-2997(2015).

    [5] Huang X L, Song J B, Yung B C et al. Ratiometric optical nanoprobes enable accurate molecular detection and imaging[J]. Chemical Society Reviews, 47, 2873-2920(2018).

    [6] Zhang R R, Schroeder A B, Grudzinski J J et al. Beyond the margins: real-time detection of cancer using targeted fluorophores[J]. Nature Reviews Clinical Oncology, 14, 347-364(2017).

    [7] Yu L H, Liu Y S, Chen X Y. Lanthanide-doped upconversion nano-bioprobes for in-vitro detection of tumor markers[J]. Chinese Journal of Luminescence, 39, 27-49(2018).

    [8] Mao H H, Zhan Z H, Zhou G H et al. Advances in application of fluorescent carbon quantum dots in drug analysis[J]. Chinese Journal of Luminescence, 42, 1245-1256(2021).

    [9] Füzéry A K, Levin J, Chan M M et al. Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges[J]. Clinical Proteomics, 10, 13(2013).

    [10] Goossens N, Nakagawa S, Sun X C et al. Cancer biomarker discovery and validation[J]. Translational Cancer Research, 4, 256-269(2015).

    [11] Henry N L, Hayes D F. Cancer biomarkers[J]. Molecular Oncology, 6, 140-146(2012).

    [12] Nguyen T H D, Tam J, Wu R A et al. Cryo-EM structure of substrate-bound human telomerase holoenzyme[J]. Nature, 557, 190-195(2018).

    [13] Kalluri R, LeBleu V S. The biology, function, and biomedical applications of exosomes[J]. Science, 367, eaau6977(2020).

    [14] Yu W, Hurley J, Roberts D et al. Exosome-based liquid biopsies in cancer: opportunities and challenges[J]. Annals of Oncology, 32, 466-477(2021).

    [15] Liu R, Zhang S X, Wei C et al. Metal stable isotope tagging: renaissance of radioimmunoassay for multiplex and absolute quantification of biomolecules[J]. Accounts of Chemical Research, 49, 775-783(2016).

    [16] Grange R D, Thompson J P, Lambert D G. Radioimmunoassay, enzyme and non-enzyme-based immunoassays[J]. British Journal of Anaesthesia, 112, 213-216(2014).

    [17] Zhao Q, Lu D, Zhang G Y et al. Recent improvements in enzyme-linked immunosorbent assays based on nanomaterials[J]. Talanta, 223, 121722(2021).

    [18] Gan S D, Patel K R. Enzyme immunoassay and enzyme-linked immunosorbent assay[J]. Journal of Investigative Dermatology, 133, 1-3(2013).

    [19] Xiao Q, Lin J M. Advances and applications of chemiluminescence immunoassay in clinical diagnosis and foods safety[J]. Chinese Journal of Analytical Chemistry, 43, 929-938(2015).

    [20] Xiao Q, Xu C X. Research progress on chemiluminescence immunoassay combined with novel technologies[J]. TrAC Trends in Analytical Chemistry, 124, 115780(2020).

    [21] Cao L, Cui X Y, Hu J et al. Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications[J]. Biosensors and Bioelectronics, 90, 459-474(2017).

    [22] Sano T, Smith C L, Cantor C R. Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates[J]. Science, 258, 120-122(1992).

    [23] Wang W Z, Yu Y, Zhang X Q et al. Laboratory analytical methods applied in the early detection of cancers by tumor biomarker[J]. Analytical Methods, 9, 3085-3093(2017).

    [24] Haas J, Katus H A, Meder B. Next-generation sequencing entering the clinical arena[J]. Molecular and Cellular Probes, 25, 206-211(2011).

    [25] Berghmans E, Boonen K, Maes E et al. Implementation of MALDI mass spectrometry imaging in cancer proteomics research: applications and challenges[J]. Journal of Personalized Medicine, 10, 54(2020).

    [26] Huang X, Liu H H, Lu D W et al. Mass spectrometry for multi-dimensional characterization of natural and synthetic materials at the nanoscale[J]. Chemical Society Reviews, 50, 5243-5280(2021).

    [27] Masson J F. Portable and field-deployed surface plasmon resonance and plasmonic sensors[J]. The Analyst, 145, 3776-3800(2020).

    [28] Reddy P J, Sadhu S, Ray S et al. Cancer biomarker detection by surface plasmon resonance biosensors[J]. Clinics in Laboratory Medicine, 32, 47-72(2012).

    [29] Bellassai N, D’Agata R, Jungbluth V et al. Surface plasmon resonance for biomarker detection: advances in non-invasive cancer diagnosis[J]. Frontiers in Chemistry, 7, 570(2019).

    [30] Guerrini L, Alvarez-Puebla R A. Surface-enhanced Raman spectroscopy in cancer diagnosis, prognosis and monitoring[J]. Cancers, 11, 748(2019).

    [31] Abalde-Cela S, Wu L, Teixeira A et al. Multiplexing liquid biopsy with surface-enhanced Raman scattering spectroscopy[J]. Advanced Optical Materials, 9, 2001171(2021).

    [32] Tabata M, Miyahara Y. Liquid biopsy in combination with solid-state electrochemical sensors and nucleic acid amplification[J]. Journal of Materials Chemistry B, 7, 6655-6669(2019).

    [33] Zhou H, Du X, Zhang Z G. Electrochemical sensors for detection of markers on tumor cells[J]. International Journal of Molecular Sciences, 22, 8184(2021).

    [34] de Pablo J G, Lindley M, Hiramatsu K et al. High-throughput Raman flow cytometry and beyond[J]. Accounts of Chemical Research, 54, 2132-2143(2021).

    [35] Chinen A B, Guan C M, Ferrer J R et al. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence[J]. Chemical Reviews, 115, 10530-10574(2015).

    [36] de Rubis G, Rajeev Krishnan S, Bebawy M. Liquid biopsies in cancer diagnosis, monitoring, and prognosis[J]. Trends in Pharmacological Sciences, 40, 172-186(2019).

    [37] Lakowicz J R. Introduction to fluorescence[M]. Principles of fluorescence spectroscopy, 1-23(1999).

    [38] Drummen G P C. Fluorescent probes and fluorescence (microscopy) techniques: illuminating biological and biomedical research[J]. Molecules, 17, 14067-14090(2012).

    [39] Fei X N, Gu Y C. Progress in modifications and applications of fluorescent dye probe[J]. Progress in Natural Science, 19, 1-7(2009).

    [40] Vajhadin F, Mazloum-Ardakani M, Sanati A et al. Optical cytosensors for the detection of circulating tumour cells[J]. Journal of Materials Chemistry B, 10, 990-1004(2022).

    [41] Zhong W W. Nanomaterials in fluorescence-based biosensing[J]. Analytical and Bioanalytical Chemistry, 394, 47-59(2009).

    [42] Ruedas-Rama M J, Walters J D, Orte A et al. Fluorescent nanoparticles for intracellular sensing: a review[J]. Analytica Chimica Acta, 751, 1-23(2012).

    [43] Valizadeh A, Mikaeili H, Samiei M et al. Quantum dots: synthesis, bioapplications, and toxicity[J]. Nanoscale Research Letters, 7, 480(2012).

    [44] Xie Y L, Shen B, Zhou B S et al. Progress in research on rare-earth upconversion luminescent nanomaterials and bio-sensing[J]. Chinese Journal of Lasers, 47, 0207017(2020).

    [45] Xu H, Wang Y X, Jing J P et al. Progress on metal nanoclusters with aggregation-induced emission characteristic in biomedical application[J]. Chinese Journal of Luminescence, 42, 336-347(2021).

    [46] Li H J, Gui B J, Zhi S B et al. A mini review on polymer dots: synthesis, properties and optical applications[J]. Chinese Journal of Luminescence, 42, 774-792(2021).

    [47] Peng F, Su Y Y, Zhong Y L et al. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy[J]. Accounts of Chemical Research, 47, 612-623(2014).

    [48] Jiang T S, Zhang R T, Dong C Z et al. Optical nanobiosensors with different structures and their applications in tumor screening[J]. Chinese Journal of Lasers, 47, 0207011(2020).

    [49] Pan P T, Zou F Y, Zhi L J et al. Synthesis of fluorescent N/Al co-doped carbon dots and its application in detection of hydrogen peroxide[J]. Laser & Optoelectronics Progress, 58, 0916002(2021).

    [50] Madani S Y, Naderi N, Dissanayake O et al. A new era of cancer treatment: carbon nanotubes as drug delivery tools[J]. International Journal of Nanomedicine, 6, 2963-2979(2011).

    [51] Feng L Y, Wu L, Qu X G. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide[J]. Advanced Materials, 25, 168-186(2013).

    [52] Jamieson T, Bakhshi R, Petrova D et al. Biological applications of quantum dots[J]. Biomaterials, 28, 4717-4732(2007).

    [53] Kumar B, Malhotra K, Fuku R et al. Recent trends in the developments of analytical probes based on lanthanide-doped upconversion nanoparticles[J]. TrAC Trends in Analytical Chemistry, 139, 116256(2021).

    [54] Yang S B, Li Y S. Fluorescent hybrid silica nanoparticles and their biomedical applications[J]. WIREs Nanomedicine and Nanobiotechnology, 12, e1603(2020).

    [55] Sun L N, Wei R Y, Feng J et al. Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects[J]. Coordination Chemistry Reviews, 364, 10-32(2018).

    [56] Solhi E, Hasanzadeh M. Recent advances on the biosensing and bioimaging based on polymer dots as advanced nanomaterial: analytical approaches[J]. TrAC Trends in Analytical Chemistry, 118, 840-852(2019).

    [57] Gupta N, Chan Y H, Saha S et al. Near-infrared-II semiconducting polymer dots for deep-tissue fluorescence imaging[J]. Chemistry, 16, 175-184(2021).

    [58] Tao Y, Li M Q, Ren J S et al. Metal nanoclusters: novel probes for diagnostic and therapeutic applications[J]. Chemical Society Reviews, 44, 8636-8663(2015).

    [59] Ji X Y, Wang H Y, Song B et al. Silicon nanomaterials for biosensing and bioimaging analysis[J]. Frontiers in Chemistry, 6, 38(2018).

    [60] Kiew S F, Kiew L V, Lee H B et al. Assessing biocompatibility of graphene oxide-based nanocarriers: a review[J]. Journal of Controlled Release, 226, 217-228(2016).

    [61] Ghaffarkhah A, Hosseini E, Kamkar M et al. Synthesis, applications, and prospects of graphene quantum dots: a comprehensive review[J]. Small, 18, e2102683(2022).

    [62] Yuan F L, Li S H, Fan Z T et al. Shining carbon dots: synthesis and biomedical and optoelectronic applications[J]. Nano Today, 11, 565-586(2016).

    [63] Namdari P, Negahdari B, Eatemadi A. Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review[J]. Biomedicine & Pharmacotherapy, 87, 209-222(2017).

    [64] Chen S L, Chen C Y, Hsieh J C H et al. Graphene oxide-based biosensors for liquid biopsies in cancer diagnosis[J]. Nanomaterials, 9, 1725(2019).

    [65] Molaei M J. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence[J]. Talanta, 196, 456-478(2019).

    [66] Yao B W, Huang H, Liu Y et al. Carbon dots: a small conundrum[J]. Trends in Chemistry, 1, 235-246(2019).

    [67] Tang L, Xiao Q Q, Mei Y J et al. Insights on functionalized carbon nanotubes for cancer theranostics[J]. Journal of Nanobiotechnology, 19, 423(2021).

    [68] Piloto A M L, Ribeiro D S M, Rodrigues S S M et al. Cellulose-based hydrogel on quantum dots with molecularly imprinted polymers for the detection of CA19-9 protein cancer biomarker[J]. Mikrochimica Acta, 189, 134(2022).

    [69] Cheng N T, Fu J. An approach to the simultaneous detection of multiple biomarkers for the early diagnosis of liver cancer using quantum dot nanoprobes[J]. Infectious Microbes and Diseases, 4, 34-40(2022).

    [70] Zhang X J, Wang Y Y, Deng H P et al. An aptamer biosensor for CA125 quantification in human serum based on upconversion luminescence resonance energy transfer[J]. Microchemical Journal, 161, 105761(2021).

    [71] Chen Y H, Shimoni O, Huang G et al. Upconversion nanoparticle-assisted single-molecule assay for detecting circulating antigens of aggressive prostate cancer[J]. Cytometry Part A, 101, 400-410(2022).

    [72] Zhu J T, Chu H Y, Shen J W et al. Nitrogen and fluorine co-doped green fluorescence carbon dots as a label-free probe for determination of cytochrome c in serum and temperature sensing[J]. Journal of Colloid and Interface Science, 586, 683-691(2021).

    [73] Han C P, Chen R Y, Wu X Q et al. Fluorescence turn-on immunosensing of HE4 biomarker and ovarian cancer cells based on target-triggered metal-enhanced fluorescence of carbon dots[J]. Analytica Chimica Acta, 1187, 339160(2021).

    [74] Bharathi G, Lin F R, Liu L W et al. An all-graphene quantum dot Förster resonance energy transfer (FRET) probe for ratiometric detection of HE4 ovarian cancer biomarker[J]. Colloids and Surfaces B: Biointerfaces, 198, 111458(2021).

    [75] Dutta K, De S, Das B et al. Development of an efficient immunosensing platform by exploring single-walled carbon nanohorns (SWCNHs) and nitrogen doped graphene quantum dot (N-GQD) nanocomposite for early detection of cancer biomarker[J]. ACS Biomaterials Science & Engineering, 7, 5541-5554(2021).

    [76] Wang C H, Zhang Y, Tang W et al. Ultrasensitive, high-throughput and multiple cancer biomarkers simultaneous detection in serum based on graphene oxide quantum dots integrated microfluidic biosensing platform[J]. Analytica Chimica Acta, 1178, 338791(2021).

    [77] Palomar Q, Xu X X, Selegård R et al. Peptide decorated gold nanoparticle/carbon nanotube electrochemical sensor for ultrasensitive detection of matrix metalloproteinase-7[J]. Sensors and Actuators B: Chemical, 325, 128789(2020).

    [78] Ma S H, Zhang Y P, Ren Q Q et al. Tetrahedral DNA nanostructure based biosensor for high-performance detection of circulating tumor DNA using all-carbon nanotube transistor[J]. Biosensors and Bioelectronics, 197, 113785(2022).

    [79] Yang Y Q, Yang Y C, Liu M H et al. FRET-created traffic light immunoassay based on polymer dots for PSA detection[J]. Analytical Chemistry, 92, 1493-1501(2020).

    [80] Xiong H W, Huang Z P, Lin Q Y et al. Surface plasmon coupling electrochemiluminescence immunosensor based on polymer dots and AuNPs for ultrasensitive detection of pancreatic cancer exosomes[J]. Analytical Chemistry, 94, 837-846(2022).

    [81] Yang Y C, Liu M H, Yang S M et al. Bimodal multiplexed detection of tumor markers in non-small cell lung cancer with polymer dot-based immunoassay[J]. ACS Sensors, 6, 4255-4264(2021).

    [82] Wong X Y, Quesada-González D, Manickam S et al. Integrating gold nanoclusters, folic acid and reduced graphene oxide for nanosensing of glutathione based on “turn-off” fluorescence[J]. Scientific Reports, 11, 2375(2021).

    [83] Fakhri N, Abarghoei S, Dadmehr M et al. Paper based colorimetric detection of miRNA-21 using Ag/Pt nanoclusters[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 227, 117529(2020).

    [84] Li F Y, Li G, Cao S J et al. Target-triggered entropy-driven amplification system-templated silver nanoclusters for multiplexed microRNA analysis[J]. Biosensors and Bioelectronics, 172, 112757(2021).

    [85] Han Y X, Wang Y X, Liu X C et al. Green- and red-emitting fluorescent silicon nanoparticles: synthesis, mechanism, and acid phosphatase sensing[J]. ACS Applied Bio Materials, 5, 295-304(2022).

    [86] Li D J, Chen H Y, Fan K et al. A supersensitive silicon nanowire array biosensor for quantitating tumor marker ctDNA[J]. Biosensors and Bioelectronics, 181, 113147(2021).

    [87] Xu H W, Dong B, Xu S H et al. High purity microfluidic sorting and in situ inactivation of circulating tumor cells based on multifunctional magnetic composites[J]. Biomaterials, 138, 69-79(2017).

    [88] Tian F, Cai L L, Chang J Q et al. Label-free isolation of rare tumor cells from untreated whole blood by interfacial viscoelastic microfluidics[J]. Lab on a Chip, 18, 3436-3445(2018).

    [89] Lian W, Tu D T, Hu P et al. Broadband excitable NIR-Ⅱ luminescent nano-bioprobes based on CuInSe2 quantum dots for the detection of circulating tumor cells[J]. Nano Today, 35, 100943(2020).

    [90] Guo H H, Song X R, Lei W et al. Direct detection of circulating tumor cells in whole blood using time-resolved luminescent lanthanide nanoprobes[J]. Angewandte Chemie, 58, 12195-12199(2019).

    [91] Li C T, Wang J X, Lu X M et al. Hydrogen peroxide-response nanoprobe for CD44-targeted circulating tumor cell detection and H2O2 analysis[J]. Biomaterials, 255, 120071(2020).

    [92] Li Z, Wang G L, Shen Y et al. DNA-templated magnetic nanoparticle-quantum dot polymers for ultrasensitive capture and detection of circulating tumor cells[J]. Advanced Functional Materials, 28, 1707152(2018).

    [93] Wu L L, Ding H M, Qu X et al. Fluidic multivalent membrane nanointerface enables synergetic enrichment of circulating tumor cells with high efficiency and viability[J]. Journal of the American Chemical Society, 142, 4800-4806(2020).

    [94] Zhang R, Le B A, Xu W et al. Magnetic “squashing” of circulating tumor cells on plasmonic substrates for ultrasensitive NIR fluorescence detection[J]. Small Methods, 3, 1800474(2019).

    [95] Ding C P, Zhang C L, Yin X Y et al. Near-infrared fluorescent Ag2S nanodot-based signal amplification for efficient detection of circulating tumor cells[J]. Analytical Chemistry, 90, 6702-6709(2018).

    [96] Xia W X, Li H D, Li Y Q et al. In vivo coinstantaneous identification of hepatocellular carcinoma circulating tumor cells by dual-targeting magnetic-fluorescent nanobeads[J]. Nano Letters, 21, 634-641(2021).

    [97] Shen H C, Su R, Peng J et al. Antibody-engineered red blood cell interface for high-performance capture and release of circulating tumor cells[J]. Bioactive Materials, 11, 32-40(2022).

    [98] Chen P P, Wang Y, He Y Q et al. Homogeneous visual and fluorescence detection of circulating tumor cells in clinical samples via selective recognition reaction and enzyme-free amplification[J]. ACS Nano, 15, 11634-11643(2021).

    [99] Yu Y Y, Yang Y, Ding J H et al. Design of a biocompatible and ratiometric fluorescent probe for the capture, detection, release, and reculture of rare number CTCs[J]. Analytical Chemistry, 90, 13290-13298(2018).

    [100] Nan F C, Xue X K, Ge J C et al. Recent advances of red/near infrared light responsive carbon dots for tumor therapy[J]. Chinese Journal of Luminescence, 42, 1155-1171(2021).

    [101] Pons T, Bouccara S, Loriette V et al. In vivo imaging of single tumor cells in fast-flowing bloodstream using near-infrared quantum dots and time-gated imaging[J]. ACS Nano, 13, 3125-3131(2019).

    [102] Han R X, Peng J R, Xiao Y et al. Ag2S nanoparticles as an emerging single-component theranostic agent[J]. Chinese Chemical Letters, 31, 1717-1728(2020).

    [103] Ding C P, Zhang C L, Cheng S S et al. Multivalent aptamer functionalized Ag2S nanodots/hybrid cell membrane-coated magnetic nanobioprobe for the ultrasensitive isolation and detection of circulating tumor cells[J]. Advanced Functional Materials, 30, 1909781(2020).

    [104] Wu L L, Wen C Y, Hu J et al. Nanosphere-based one-step strategy for efficient and nondestructive detection of circulating tumor cells[J]. Biosensors and Bioelectronics, 94, 219-226(2017).

    [105] Liu P F, Wang L, Zhao K R et al. High luminous efficiency Au@CDs for sensitive and label-free electrochemiluminescent detection of circulating tumor cells in serum[J]. Sensors and Actuators B: Chemical, 316, 128131(2020).

    [106] Wan J C M, Massie C, Garcia-Corbacho J et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA[J]. Nature Reviews Cancer, 17, 223-238(2017).

    [107] Merker J D, Oxnard G R, Compton C et al. Circulating tumor DNA analysis in patients with cancer: American society of clinical oncology and college of American pathologists joint review[J]. Journal of Clinical Oncology, 36, 1631-1641(2018).

    [108] Cheng M L, Pectasides E, Hanna G J et al. Circulating tumor DNA in advanced solid tumors: clinical relevance and future directions[J]. CA: A Cancer Journal for Clinicians, 71, 176-190(2021).

    [109] Lyu N N, Rajendran V K, Diefenbach R J et al. Multiplex detection of ctDNA mutations in plasma of colorectal cancer patients by PCR/SERS assay[J]. Nanotheranostics, 4, 224-232(2020).

    [110] Varona M, Eitzmann D R, Pagariya D et al. Solid-phase microextraction enables isolation of BRAF V600E circulating tumor DNA from human plasma for detection with a molecular beacon loop-mediated isothermal amplification assay[J]. Analytical Chemistry, 92, 3346-3353(2020).

    [111] Wood-Bouwens C M, Haslem D, Moulton B et al. Therapeutic monitoring of circulating DNA mutations in metastatic cancer with personalized digital PCR[J]. The Journal of Molecular Diagnostics, 22, 247-261(2020).

    [112] Kurtz D M, Soo J, Keh L C T et al. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA[J]. Nature Biotechnology, 39, 1537-1547(2021).

    [113] Wang Y S, Kong S L, Su X D. Structure-selective differentiation of deletion mutations in circulating tumor DNA using dual probe-based isothermal amplification[J]. Chemical Communications, 57, 6796-6799(2021).

    [114] Ou C Y, Vu T, Grunwald J T et al. An ultrasensitive test for profiling circulating tumor DNA using integrated comprehensive droplet digital detection[J]. Lab on a Chip, 19, 993-1005(2019).

    [115] Zhang Y Y, Lu H T, Yang F et al. Uniform palladium nanosheets for fluorimetric detection of circulating tumor DNA[J]. Analytica Chimica Acta, 1139, 164-168(2020).

    [116] Liu G X, Ma X Y, Tang Y G et al. Ratiometric fluorescence method for ctDNA analysis based on the construction of a DNA four-way junction[J]. The Analyst, 145, 1174-1178(2020).

    [117] Chen X R, Yang L, Liang S et al. Entropy-driven strand displacement reaction for ultrasensitive detection of circulating tumor DNA based on upconversion and Fe3O4 nanocrystals[J]. Science China Materials, 64, 2593-2600(2021).

    [118] Wang J W, Hua G P, Li L H et al. Upconversion nanoparticle and gold nanocage satellite assemblies for sensitive ctDNA detection in serum[J]. The Analyst, 145, 5553-5562(2020).

    [119] Kalluri R. The biology and function of exosomes in cancer[J]. The Journal of Clinical Investigation, 126, 1208-1215(2016).

    [120] Bai Y A, Lu Y X, Wang K et al. Rapid isolation and multiplexed detection of exosome tumor markers via queued beads combined with quantum dots in a microarray[J]. Nano-Micro Letters, 11, 59(2019).

    [121] LeBleu V S, Kalluri R. Exosomes as a multicomponent biomarker platform in cancer[J]. Trends in Cancer, 6, 767-774(2020).

    [122] Qian C G, Xiao Y J, Wang J et al. Rapid exosomes concentration and in situ detection of exosomal microRNA on agarose-based microfluidic chip[J]. Sensors and Actuators B: Chemical, 333, 129559(2021).

    [123] Yang L M, Yin X H, An B et al. Precise capture and direct quantification of tumor exosomes via a highly efficient dual-aptamer recognition-assisted ratiometric immobilization-free electrochemical strategy[J]. Analytical Chemistry, 93, 1709-1716(2021).

    [124] Zhang H, Zhou Y J, Luo D et al. Immunoassay-aptasensor for the determination of tumor-derived exosomes based on the combination of magnetic nanoparticles and hybridization chain reaction[J]. RSC Advances, 11, 4983-4990(2021).

    [125] Zhao W J, Zhang L Q, Ye Y F et al. Microsphere mediated exosome isolation and ultra-sensitive detection on a dielectrophoresis integrated microfluidic device[J]. The Analyst, 146, 5962-5972(2021).

    [126] Chen H, Luo D, Shang B et al. Immunoassay-type biosensor based on magnetic nanoparticle capture and the fluorescence signal formed by horseradish peroxidase catalysis for tumor-related exosome determination[J]. Mikrochimica Acta, 187, 282(2020).

    [127] Zhang J L, Zhu Y F, Shi J J et al. Sensitive signal amplifying a diagnostic biochip based on a biomimetic periodic nanostructure for detecting cancer exosomes[J]. ACS Applied Materials & Interfaces, 12, 33473-33482(2020).

    [128] Wang Y H, Luo D W, Fang Y et al. An aptasensor based on upconversion nanoparticles as LRET donors for the detection of exosomes[J]. Sensors and Actuators B, 298, 126900(2019).

    [129] Li B, Liu C C, Pan W L et al. Facile fluorescent aptasensor using aggregation-induced emission luminogens for exosomal proteins profiling towards liquid biopsy[J]. Biosensors and Bioelectronics, 168, 112520(2020).

    [130] Cheng S S, Kong Q Q, Hu X Y et al. An ultrasensitive strand displacement signal amplification-assisted synchronous fluorescence assay for surface proteins of small extracellular vesicle analysis and cancer identification[J]. Analytical Chemistry, 94, 1085-1091(2022).

    [131] Han Z W, Wan F N, Deng J Q et al. Ultrasensitive detection of mRNA in extracellular vesicles using DNA tetrahedron-based thermophoretic assay[J]. Nano Today, 38, 101203(2021).

    [132] Liu C, Zhao J X, Tian F et al. λ-DNA- and aptamer-mediated sorting and analysis of extracellular vesicles[J]. Journal of the American Chemical Society, 141, 3817-3821(2019).

    [133] Lu Y X, Ye L, Jian X Y et al. Integrated microfluidic system for isolating exosome and analyzing protein marker PD-L1[J]. Biosensors and Bioelectronics, 204, 113879(2022).

    [134] Wang Y J, Wei Z K, Luo X D et al. An ultrasensitive homogeneous aptasensor for carcinoembryonic antigen based on upconversion fluorescence resonance energy transfer[J]. Talanta, 195, 33-39(2019).

    [135] Wang K X, Ding Y D, Yang W Q et al. Fluorescence-infrared absorption dual-mode nanoprobes based on carbon dots@SiO2 nanorods for ultrasensitive and reliable detection of carcinoembryonic antigen[J]. Talanta, 230, 122342(2021).

    [136] Zhou S Y, Tu D T, Liu Y et al. Ultrasensitive point-of-care test for tumor marker in human saliva based on luminescence-amplification strategy of lanthanide nanoprobes[J]. Advanced Science, 8, 2002657(2021).

    [137] Sun K X, Li J L. A new method based on guanine rich aptamer structural change for carcinoembryonic antigen detection[J]. Talanta, 236, 122867(2022).

    [138] Iwanaga M. All-dielectric metasurface fluorescence biosensors for high-sensitivity antibody/antigen detection[J]. ACS Nano, 14, 17458-17467(2020).

    [139] Miao H, Wang L, Zhuo Y et al. Label-free fluorimetric detection of CEA using carbon dots derived from tomato juice[J]. Biosensors and Bioelectronics, 86, 83-89(2016).

    [140] Zhan Y J, Yang S T, Luo F et al. Emission wavelength switchable carbon dots combined with biomimetic inorganic nanozymes for a two-photon fluorescence immunoassay[J]. ACS Applied Materials & Interfaces, 12, 30085-30094(2020).

    [141] Xie L J, Li R F, Zheng B Y et al. One-step transformation from rofecoxib to a COX-2 NIR probe for human cancer tissue/organoid targeted bioimaging[J]. ACS Applied Bio Materials, 4, 2723-2731(2021).

    [142] Xie L J, Li R F, Zheng B Y et al. Development of rofecoxib-based fluorescent probes and investigations on their solvatochromism, AIE activity, mechanochromism, and COX-2-targeted bioimaging[J]. Analytical Chemistry, 93, 11991-12000(2021).

    [143] Zhang X R, Sun J, Liu J S et al. Label-free electrochemical immunosensor based on conductive Ag contained EMT-style nano-zeolites and the application for α-fetoprotein detection[J]. Sensors and Actuators B: Chemical, 255, 2919-2926(2018).

    [144] Li G Y, Zeng J X, Liu H L et al. A fluorometric aptamer nanoprobe for alpha-fetoprotein by exploiting the FRET between 5-carboxyfluorescein and palladium nanoparticles[J]. Mikrochimica Acta, 186, 314(2019).

    [145] Wang K, Li Y Z, Wang X W et al. Automatic time-resolved fluorescence immunoassay of serum alpha fetoprotein-L3 variant via LCA magnetic cationic polymeric liposomes improves the diagnostic accuracy of liver cancer[J]. International Journal of Nanomedicine, 15, 4933-4941(2020).

    [146] Li S Q, Liu X, Liu S L et al. Fluorescence sensing strategy based on aptamer recognition and mismatched catalytic hairpin assembly for highly sensitive detection of alpha-fetoprotein[J]. Analytica Chimica Acta, 1141, 21-27(2021).

    [147] Afsharipour R, Shabani A M H, Dadfarnia S. A selective off-on fluorescent aptasensor for alpha-fetoprotein determination based on N-carbon quantum dots and oxidized nanocellulose[J]. Journal of Photochemistry and Photobiology A: Chemistry, 428, 113872(2022).

    [148] Wang W, Cai X Y, Li Q L et al. Application of a microfluidic paper-based bioimmunosensor with laser-induced fluorescence detection in the determination of alpha-fetoprotein from serum of hepatopaths[J]. Talanta, 221, 121660(2021).

    [149] Yang Y, Zhu J, Zhao J et al. Growth of spherical gold satellites on the surface of Au@Ag@SiO2 core-shell nanostructures used for an ultrasensitive SERS immunoassay of alpha-fetoprotein[J]. ACS Applied Materials & Interfaces, 11, 3617-3626(2019).

    [150] Zhou L, Ji F H, Zhang T et al. An fluorescent aptasensor for sensitive detection of tumor marker based on the FRET of a sandwich structured QDs-AFP-AuNPs[J]. Talanta, 197, 444-450(2019).

    [151] Zhu D, Hu Y, Zhang X J et al. Colorimetric and fluorometric dual-channel detection of α-fetoprotein based on the use of ZnS-CdTe hierarchical porous nanospheres[J]. Mikrochimica Acta, 186, 124(2019).

    [152] Tawfik S M, Elmasry M R, Sharipov M et al. Dual emission nonionic molecular imprinting conjugated polythiophenes-based paper devices and their nanofibers for point-of-care biomarkers detection[J]. Biosensors and Bioelectronics, 160, 112211(2020).

    [153] Balk S P, Ko Y J, Bubley G J. Biology of prostate-specific antigen[J]. Journal of Clinical Oncology, 21, 383-391(2003).

    [154] Lilja H, Ulmert D, Vickers A J. Prostate-specific antigen and prostate cancer: prediction, detection and monitoring[J]. Nature Reviews Cancer, 8, 268-278(2008).

    [155] Rong Z, Bai Z K, Li J N et al. Dual-color magnetic-quantum dot nanobeads as versatile fluorescent probes in test strip for simultaneous point-of-care detection of free and complexed prostate-specific antigen[J]. Biosensors and Bioelectronics, 145, 111719(2019).

    [156] Hu S T, Xu H W, Zhou B S et al. Double stopband bilayer photonic crystal based upconversion fluorescence PSA sensor[J]. Sensors and Actuators B: Chemical, 326, 128816(2021).

    [157] Turan E, Zengin A, Suludere Z et al. Construction of a sensitive and selective plasmonic biosensor for prostate specific antigen by combining magnetic molecularly-imprinted polymer and surface-enhanced Raman spectroscopy[J]. Talanta, 237, 122926(2022).

    [158] Lovell S, Zhang L R, Kryza T et al. A suite of activity-based probes to dissect the KLK activome in drug-resistant prostate cancer[J]. Journal of the American Chemical Society, 143, 8911-8924(2021).

    [159] Kawatani M, Yamamoto K, Yamada D et al. Fluorescence detection of prostate cancer by an activatable fluorescence probe for PSMA carboxypeptidase activity[J]. Journal of the American Chemical Society, 141, 10409-10416(2019).

    [160] Chen C X, Zhao D, Wang B et al. Alkaline phosphatase-triggered in situ formation of silicon-containing nanoparticles for a fluorometric and colorimetric dual-channel immunoassay[J]. Analytical Chemistry, 92, 4639-4646(2020).

    [161] Zhang B, Tang W S, Ding S N. Rational design of fluorescent barcodes for suspension array through a simple simulation strategy[J]. The Analyst, 146, 4796-4802(2021).

    [162] Jiang Y T, Tang Y G, Miao P. Polydopamine nanosphere@silver nanoclusters for fluorescence detection of multiplex tumor markers[J]. Nanoscale, 11, 8119-8123(2019).

    [163] Wu W J, Liu X Y, Shen M F et al. Multicolor quantum dot nanobeads based fluorescence-linked immunosorbent assay for highly sensitive multiplexed detection[J]. Sensors and Actuators B: Chemical, 338, 129827(2021).

    [164] Zhang Y Z, Ye W Q, Yang C G et al. Simultaneous quantitative detection of multiple tumor markers in microfluidic nanoliter-volume droplets[J]. Talanta, 205, 120096(2019).

    [165] He J H, Cheng Y Y, Zhang Q Q et al. Carbon dots-based fluorescence resonance energy transfer for the prostate specific antigen (PSA) with high sensitivity[J]. Talanta, 219, 121276(2020).

    [166] Zhang W J, Huo F J, Cheng F Q et al. Employing an ICT-FRET integration platform for the real-time tracking of SO2 metabolism in cancer cells and tumor models[J]. Journal of the American Chemical Society, 142, 6324-6331.(2020).

    [167] Fang C C, Chou C C, Yang Y Q et al. Multiplexed detection of tumor markers with multicolor polymer dot-based immunochromatography test strip[J]. Analytical Chemistry, 90, 2134-2140(2018).

    [168] Ao L J, Liao T, Huang L et al. Sensitive and simultaneous detection of multi-index lung cancer biomarkers by an NIR-Ⅱ fluorescence lateral-flow immunoassay platform[J]. Chemical Engineering Journal, 436, 135204(2022).

    Biao Dong, Lihua Guo, Dayong Liu, Yuda Wang, Wei Liu, Rui Yang, Haitao He, Jiao Sun. Progress in Tumor Biomarker Detection Based on Fluorescence Method[J]. Chinese Journal of Lasers, 2022, 49(20): 2007103
    Download Citation