• Photonics Research
  • Vol. 6, Issue 11, 987 (2018)
Liuqing He1、2, Yuhao Guo1、2, Zhaohong Han3, Kazumi Wada3、4, Jurgen Michel3, Anuradha M. Agarwal3, Lionel C. Kimerling3, Guifang Li1、2、5, and Lin Zhang1、2、*
Author Affiliations
  • 1Key Laboratory of Opto-electronic Information Technical Science of Ministry of Education, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Integrated Opto-electronic Technologies and Devices in Tianjin, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
  • 3Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
  • 4Department of Materials Engineering, University of Tokyo, Tokyo 113-8656, Japan
  • 5College of Optics and Photonics, CREOL and FPCE, University of Central Florida, Orlando, Florida 32816, USA
  • show less
    DOI: 10.1364/PRJ.6.000987 Cite this Article Set citation alerts
    Liuqing He, Yuhao Guo, Zhaohong Han, Kazumi Wada, Jurgen Michel, Anuradha M. Agarwal, Lionel C. Kimerling, Guifang Li, Lin Zhang. Broadband athermal waveguides and resonators for datacom and telecom applications[J]. Photonics Research, 2018, 6(11): 987 Copy Citation Text show less
    References

    [1] R. A. Soref. The past, present and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron., 12, 1678-1687(2006).

    [2] R. Kirchain, L. Kimerling. A roadmap for nanophotonics. Nat. Photonics, 1, 303-305(2007).

    [3] J. Leuthold, C. Koos, W. Freude. Nonlinear silicon photonics. Nat. Photonics, 4, 535-544(2010).

    [4] R. Soref. Mid-infrared photonics in silicon and germanium. Nat. Photonics, 4, 495-497(2010).

    [5] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine. Microring resonator channel dropping filters. J. Lightwave Technol., 15, 998-1005(1997).

    [6] Q. Xu, D. Fattal, R. G. Beausoleil. Silicon microring resonators with 1.5-μm radius. Opt. Express, 16, 4309-4315(2008).

    [7] I. Chremmos, O. Schwelb, N. Uzunoglu. Photonic Microresonator Research and Applications(2010).

    [8] K. Padmaraju, J. Chan, L. Chen, M. Lipson, K. Bergman. Thermal stabilization of a microring modulator using feedback control. Opt. Express, 20, 27999-28008(2012).

    [9] B. Guha, B. B. C. Kyotoku, M. Lipson. CMOS-compatible athermal silicon microring resonators. Opt. Express, 18, 3487-3493(2010).

    [10] G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, A. V. Krishnamoorthy. 25??Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning. Opt. Express, 19, 20435-20443(2011).

    [11] B. Guha, K. Preston, M. Lipson. Athermal silicon microring electro-optic modulator. Opt. Lett., 37, 2253-2255(2012).

    [12] V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, L. Kimerling. Athermal operation of silicon waveguides: spectral, second order and footprint dependencies. Opt. Express, 18, 17631-17639(2010).

    [13] Y. Kokubun, S. Yoneda, S. Matsuura. Temperature-independent optical filter at 1.55?mum wavelength using a silica-based athermal waveguide. Electron. Lett., 34, 367-369(1998).

    [14] J. M. Lee, D. J. Kim, H. Ahn, S. H. Park, G. Kim. Temperature dependence of silicon nanophotonic ring resonator with a polymeric overlayer. J. Lightwave Technol., 25, 2236-2243(2007).

    [15] W. Ye, J. Michel, L. Kimerling. Athermal high-index-contrast waveguide design. IEEE Photon. Technol. Lett., 20, 885-887(2008).

    [16] L. Zhou, K. Ken, K. Okamoto, R. P. Scott, N. K. Fontaine, D. Ding, V. Akella, S. J. B. Yoo. Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation. Appl. Phys. A, 95, 1101-1109(2009).

    [17] P. Alipour, E. S. Hosseini, A. A. Eftekhar, B. Momeni, A. Adibi. Athermal performance in high-Q polymer-clad silicon microdisk resonators. Opt. Lett., 35, 3462-3464(2010).

    [18] J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, M. Zhao, G. Morthier, R. Baets. Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. Opt. Express, 17, 14627-14633(2009).

    [19] F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, S. Yokoyama. Athermal hybrid silicon/polymer ring resonator electro-optic modulator. ACS Photon., 3, 780-783(2016).

    [20] J. T. Bovington. Athermal laser designs on Si and heterogeneous III-V/Si3N4 integration(2014).

    [21] B. Guha, J. Cardenas, M. Lipson. Athermal silicon microring resonators with titanium oxide cladding. Opt. Express, 21, 26557-26563(2013).

    [22] F. Qiu, A. M. Spring, F. Yu, S. Yokoyama. Complementary metal oxide semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators. Appl. Phys. Lett., 102, 051106(2013).

    [23] F. Qiu, A. M. Spring, S. Yokoyama. Athermal and high-Q hybrid TiO2–Si3N4 ring resonator via an etching-free fabrication technique. ACS Photon., 2, 405-409(2015).

    [24] S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, S. J. B. Yoo. CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide. Opt. Express, 21, 13958-13968(2013).

    [25] H. Hirota, M. Itoh, M. Oguma, Y. Hibino. Athermal arrayed-waveguide grating multi/demultiplexers composed of TiO2-SiO2 waveguides on Si. IEEE Photon. Technol. Lett., 17, 375-377(2005).

    [26] T. Lipka, L. Moldenhauer, J. Müller, H. K. Trieu. Athermal and wavelength-trimmable photonic filters based on TiO2-cladded amorphous-SOI. Opt. Express, 23, 20075-20088(2015).

    [27] J. Bovington, S. Srinivasan, J. E. Bowers. Athermal laser design. Opt. Express, 22, 19357-19364(2014).

    [28] A. Arbabi, L. L. Goddard. Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances. Opt. Lett., 38, 3878-3881(2013).

    [29] I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, V. Zwiller. Thermo-optic characterization of silicon nitride resonators for cryogenic photonic circuits. IEEE Photon. J., 8, 2701009(2016).

    [30] G. Cocorullo, F. G. Della Corte, I. Rendina. Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550??K at the wavelength of 1523??nm. Appl. Phys. Lett., 74, 3338-3340(1999).

    [31] A. C. Hryciw, R. D. Kekatpure, S. Yerci, L. Dal Negro, M. L. Brongersma. Thermo-optic tuning of erbium-doped amorphous silicon nitride microdisk resonators. Appl. Phys. Lett., 98, 041102(2011).

    Liuqing He, Yuhao Guo, Zhaohong Han, Kazumi Wada, Jurgen Michel, Anuradha M. Agarwal, Lionel C. Kimerling, Guifang Li, Lin Zhang. Broadband athermal waveguides and resonators for datacom and telecom applications[J]. Photonics Research, 2018, 6(11): 987
    Download Citation