• Chinese Journal of Lasers
  • Vol. 46, Issue 6, 0614001 (2019)
Tao Song1、2, Wei Wang1、2, Diwei Liu1、2、*, and Shenggang Liu1、2
Author Affiliations
  • 1 Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
  • 2 Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu, Sichuan 610054, China
  • show less
    DOI: 10.3788/CJL201946.0614001 Cite this Article Set citation alerts
    Tao Song, Wei Wang, Diwei Liu, Shenggang Liu. Terahertz Gyrotron Used for Dynamic Nuclear-Polarization-Enhanced Nuclear Magnetic Resonance[J]. Chinese Journal of Lasers, 2019, 46(6): 0614001 Copy Citation Text show less
    References

    [1] Nanni E A, Barnes A B, Griffin R G et al. THz dynamic nuclear polarization NMR[J]. IEEE Transactions on Terahertz Science and Technology, 1, 145-163(2011). http://europepmc.org/abstract/med/24639915

    [2] Jaudzems K, Polenova T, Pintacuda G et al. DNP NMR of biomolecular assemblies[J]. Journal of Structural Biology, 206, 90-98(2019).

    [3] Li Z L, Feng J J, Cai J et al. Latest progress of THZ gyrotron and dynamic nuclear polarization enhanced nuclear magnetic resonance[J]. Chinese Journal of Vacuum Science and Technology, 35, 744-751(2015).

    [4] Hornstein M K, Bajaj V S, Griffin R G et al. Continuous-wave operation of a 460-GHz second harmonic gyrotron oscillator[J]. IEEE Transactions on Plasma Science, 34, 524-533(2006). http://pubmedcentralcanada.ca/pmcc/articles/PMC1948849/

    [5] Torrezan A C, Han S T, Shapiro M A et al. CW operation of a tunable 330/460 GHz gyrotron for enhanced nuclear magnetic resonance. [C]∥2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves, September 15-19, 2008, Pasadena, CA, USA. New York: IEEE, 4665733(2008).

    [6] Torrezan A C, Han S T, Mastovsky I et al. Continuous-wave operation of a frequency-tunable 460-GHz second-harmonic gyrotron for enhanced nuclear magnetic resonance[J]. IEEE Transactions on Plasma Science, 38, 1150-1159(2010). http://ieeexplore.ieee.org/document/5453063

    [7] Joye C D, Griffin R G, Hornstein M K et al. Operational characteristics of a 14-W 140-GHz gyrotron for dynamic nuclear polarization[J]. IEEE Transactions on Plasma Science, 34, 518-523(2006). http://www.ncbi.nlm.nih.gov/pubmed/17431442

    [8] Jawla S, Ni Q Z, Barnes A et al. Continuously tunable 250 GHz gyrotron with a double disk window for DNP-NMR spectroscopy[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 34, 42-52(2013). http://link.springer.com/article/10.1007/s10762-012-9947-1

    [9] Torrezan A C, Shapiro M A, Sirigiri J R et al. 10.6: operation of a tunable second-harmonic 330 GHz CW gyrotron. [C]∥2010 IEEE International Vacuum Electronics Conference (IVEC), May 18-20, 2010, Monterey, CA, USA. New York: IEEE, 199-200(2010).

    [10] Jawla S K, Guss W C, Shapiro M A et al. Design and experimental results from a 527 GHz gyrotron for DNP-NMR spectroscopy. [C]∥2014 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), September 14-19, 2014, Tucson, AZ, USA. New York: IEEE, 6956164(2014).

    [11] Rosay M, Tometich L, Pawsey S et al. Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results[J]. Physical Chemistry Chemical Physics, 12, 5850-5860(2010). http://pubmedcentralcanada.ca/pmcc/articles/PMC4442492/

    [12] Blank M, Borchard P, Cauffman S et al. High-frequency CW gyrotrons for NMR/DNP applications. [C]∥2012 IEEE International Vacuum Electronics Conference(IVEC), April 24-26, 2012, Monterey, CA, USA. New York: IEEE, 327-328(2012).

    [13] Felch K, Blank M, Borchard P et al. First tests of a 527 GHz gyrotron for dynamic nuclear polarization. [C]∥2013 IEEE 14th International Vacuum Electronics Conference (IVEC), May 21-23, 2013, Paris, France. New York: IEEE, 6571048(2013).

    [14] Blank M, Borchard P, Cauffman S et al. Demonstration of a 593 GHz gyrotron for DNP. [C]∥2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), September 9-14, 2018, Nagoya, Japan. New York: IEEE, 8510010(2018).

    [15] Sirigiri J, Maly T, Tarricone L. Compact gyrotron systems for dynamic nuclear polarization NMR spectroscopy. [C]∥2012 IEEE International Vacuum Electronics Conference(IVEC), April 24-26, 2012, Monterey, CA, USA. New York: IEEE, 333-334(2012).

    [16] Agusu L, Idehara T, Ogawa I et al. Detailed consideration of experimental results of gyrotron FU CW II developed as a radiation source for DNP-NMR spectroscopy[J]. International Journal of Infrared and Millimeter Waves, 28, 499-511(2007). http://link.springer.com/article/10.1007/s10762-007-9234-8

    [17] Idehara T, Ogawa I, Mori H et al. A THz gyrotron FU CW III with a 20T superconducting magnet. [C]∥2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves, September 15-19, 2008, Pasadena, CA, USA. New York: IEEE, 4665652(2008).

    [18] Idehara T, Kosuga K, Agusu L et al. Continuously frequency tunable high power sub-THz radiation source: gyrotron FU CW VI for 600 MHz DNP-NMR spectroscopy[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 31, 775-790(2010). http://link.springer.com/article/10.1007/s10762-010-9643-y

    [19] Kartikeyan M V, Borie E, Thumm M. A 250 GHz, 50 W, CW second harmonic gyrotron[J]. International Journal of Infrared and Millimeter Waves, 28, 611-619(2007). http://link.springer.com/article/10.1007/s10762-007-9242-8

    [20] Bratman V L, Fedotov A E, Kalynov Y K et al. Numerical study of a low-voltage gyrotron (“gyrotrino”) for DNP/NMR spectroscopy[J]. IEEE Transactions on Plasma Science, 45, 644-648(2017). http://ieeexplore.ieee.org/document/7873343/

    [21] Shcherbinin V I, Tkachova T I, Tkachenko V I. Improved cavity for broadband frequency-tunable gyrotron[J]. IEEE Transactions on Electron Devices, 65, 257-262(2018). http://www.onacademic.com/detail/journal_1000040197387310_d319.html

    [22] Song T, Shen H, Huang J et al. Study on the effect of electron beam quality on a continuously frequency-tunable 250-GHz gyrotron[J]. IEEE Transactions on Electron Devices, 65, 1572-1577(2018).

    Tao Song, Wei Wang, Diwei Liu, Shenggang Liu. Terahertz Gyrotron Used for Dynamic Nuclear-Polarization-Enhanced Nuclear Magnetic Resonance[J]. Chinese Journal of Lasers, 2019, 46(6): 0614001
    Download Citation