• Photonics Research
  • Vol. 12, Issue 10, 2148 (2024)
Yi-Ming Wang1, Fei Fan1,2,*, Hui-Jun Zhao1, Jing Liu2..., Yun-Yun Ji2, Jie-Rong Cheng1 and Sheng-Jiang Chang2|Show fewer author(s)
Author Affiliations
  • 1Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
  • 2Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
  • show less
    DOI: 10.1364/PRJ.527697 Cite this Article Set citation alerts
    Yi-Ming Wang, Fei Fan, Hui-Jun Zhao, Jing Liu, Yun-Yun Ji, Jie-Rong Cheng, Sheng-Jiang Chang, "Active broadband unidirectional focusing of terahertz surface plasmons based on a liquid-crystal-integrated on-chip metadevice," Photonics Res. 12, 2148 (2024) Copy Citation Text show less
    References

    [1] J. J. Ma, R. Shrestha, J. Adelberg. Security and eavesdropping in terahertz wireless links. Nature, 563, 89-93(2018).

    [2] W. N. Shi, Y. M. Wang, F. Fan. THz enantiomers of drugs recognized by the polarization enhancement of gold nanoparticles on an asymmetric metasurface. Nanoscale, 15, 14146-14154(2023).

    [3] Y. Zhu, B. B. Lu, Z. Y. Fan. Geometric metasurface for polarization synthesis and multidimensional multiplexing of terahertz converged vortices. Photon. Res., 10, 1517-1532(2022).

    [4] X. F. Zang, H. Z. Ding, Y. Intaravanne. A multi-foci metalens with polarization-rotated focal points. Laser Photon. Rev., 13, 1900182(2019).

    [5] B. W. Sun, X. F. Zang, B. B. Lu. Generalized terahertz perfect vortices with transmutable intensity profiles based on spin-decoupled geometric metasurfaces. Adv. Opt. Mater., 11, 2301048(2023).

    [6] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424, 824-830(2003).

    [7] Y. Fang, M. Sun. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci. Appl., 4, e294(2015).

    [8] F. J. Garcia-Vidal, A. I. Fernández-Domínguez, L. Martin-Moreno. Spoof surface plasmon photonics. Rev. Mod. Phys., 94, 025004(2022).

    [9] Q. Xu, Y. Lang, X. Jiang. Meta-optics inspired surface plasmon devices. Photon. Insights, 2, R02(2023).

    [10] X. Zhang, Q. Xu, L. Xia. Terahertz surface plasmonic waves: a review. Adv. Photon., 2, 014001(2020).

    [11] X. F. Zang, Y. M. Zhu, C. X. Mao. Manipulating terahertz plasmonic vortex based on geometric and dynamic phase. Adv. Opt. Mater., 7, 1801328(2019).

    [12] X. Zhang, Y. Xu, W. Yue. Anomalous surface wave launching by handedness phase control. Adv. Mater., 27, 7123-7129(2015).

    [13] L. Y. Lee, K. Kim, S. J. Kim. Plasmonic meta-slit: shaping and controlling near-field focus. Optica, 2, 6-13(2015).

    [14] X. Su, Q. Xu, Y. Lu. Gradient index devices for terahertz spoof surface plasmon polaritons. ACS Photon., 7, 3305-3312(2020).

    [15] F. Liu, D. Wang, H. Zhu. High-efficiency metasurface-based surface-plasmon lenses. Laser Photon. Rev., 17, 2201001(2023).

    [16] J. Lin, J. P. B. Mueller, Q. Wang. Polarization-controlled tunable directional coupling of surface. Science, 340, 331-334(2013).

    [17] X. Jiang, Q. Xu, Y. Lang. Geometric phase control of surface plasmons by dipole sources. Laser Photon. Rev., 17, 2200948(2023).

    [18] Q. Xu, X. Zhang, Q. Yang. Polarization-controlled asymmetric excitation of surface plasmons. Optica, 4, 1044-1051(2017).

    [19] Z. Wang, S. Li, X. Zhang. Excite spoof surface plasmons with tailored wavefronts using high-efficiency terahertz metasurfaces. Adv. Sci., 7, 2000982(2020).

    [20] J. Han, Y. Xu, H. Zhang. Functional meta lenses for compound plasmonic vortex field generation and control. Adv. Funct. Mater., 32, 2111000(2022).

    [21] E. Prinz, G. Spektor, M. Hartelt. Tailorable polarization-dependent directional coupling of surface plasmons. Nano Lett., 21, 3941-3946(2021).

    [22] Y. Lang, Q. Xu, X. Chen. On-chip plasmonic vortex interferometers. Laser Photon. Rev., 16, 2200242(2022).

    [23] C. H. Gan, G. R. Nash. Broadband and efficient plasmonic controdl in the near-infrared and visible via strong interference of surface plasmon polaritons. Opt. Lett., 38, 4453-4456(2013).

    [24] B. Chen, J. Yang, C. Hu. Plasmonic polarization nano-splitter based on asymmetric optical slot antenna pairs. Opt. Lett., 41, 4931-4934(2016).

    [25] M. Feng, B. Zhang, H. Ling. Active metal-graphene hybrid terahertz surface plasmon polaritons. Nanophotonics, 11, 3331-3338(2022).

    [26] H. Su, Q. Li, G. Xu. Active control of polarization-dependent terahertz surface plasmonic wave excitation using coupled graphene-metal hybrid metasurfaces. Phys. Scr., 99, 025526(2024).

    [27] Q. Li, H. Su, G. Xu. Active control of terahertz surface plasmonic wave excitation using electromagnetically induced transparency based graphene metasurfaces. Opt. Express, 31, 37452-37463(2023).

    [28] L. Chen, T. Ren, Y. Zhao. Polarization-independent wavefront manipulation of surface plasmons with plasmonic metasurfaces. Adv. Opt. Mater., 8, 2000868(2020).

    [29] X. Zhao, X. Feng, P. Zhao. Polarization-controllably launching localized cosine-Gauss beam with spatially varied metallic nano-apertures. Opt. Express, 27, 22053-22073(2019).

    [30] L. Zhu, Z. Xiong, W. Yu. Polarization-controlled tunable multi-focal plasmonic lens. Plasmonics, 12, 33-38(2017).

    [31] M. A. Bavil, Z. Zhou, Q. Deng. Active unidirectional propagation of surface plasmons at subwavelength slits. Opt. Express, 21, 17066-17076(2013).

    [32] C. Liu, Y. Xu, R. Huang. Terahertz metamaterials for broadband, high modulation depth modulator, and tunable dual-band absorber based on metal-vanadium dioxide hybrid structure. AIP Adv., 13, 095204(2023).

    [33] J. Li, J. Li, C. Zheng. Dynamic control of reflective chiral terahertz metasurface with a new application developing in full grayscale near field imaging. Carbon, 172, 189-199(2021).

    [34] J. T. Li, J. Li, C. Zheng. Active controllable spin-selective terahertz asymmetric transmission based on all-silicon metasurfaces. Appl. Phys. Lett., 118, 221110(2021).

    [35] Y. Sun, Y. Xu, H. Li. Flexible control of broadband polarization in a spintronic terahertz emitter integrated with liquid crystal and metasurface. ACS Appl. Mater. Interfaces, 14, 32646-32656(2022).

    [36] O. Buchnev, N. Podoliak, K. Kaltenecker. Metasurface-based optical liquid crystal cell as an ultrathin spatial phasmodulator for THz applications. ACS Photon., 7, 3199-3206(2020).

    [37] M. A. Naveed, J. Kim, I. Javed. Novel spin-decoupling strategy in liquid crystal-integrated metasurfaces for interactive metadisplays. Adv. Opt. Mater., 10, 2200196(2022).

    [38] H. J. Zhao, F. Fan, T. R. Zhang. Dynamic terahertz anisotropy and chirality enhancement in liquid-crystal anisotropic dielectric metasurfaces. Photon. Res., 10, 1097-1106(2022).

    [39] C. X. Liu, F. Yang, J. F. Xiao. Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals. Adv. Opt. Mater., 9, 2100932(2021).

    [40] X. Zhuang, W. Zhang, K. Wang. Active terahertz beam steering based on mechanical deformation of liquid crystal elastomer metasurface. Light Sci. Appl., 12, 14(2023).

    [41] X. Fu, L. Shi, J. Yang. Flexible terahertz beam manipulations based on liquid-crystal-integrated programmable metasurfaces. ACS Appl. Mater. Interfaces, 14, 22287-22294(2022).

    [42] T. V. Teperik, A. Archambault, F. Marquier. Huygens-Fresnel principle for surface plasmons. Opt. Express, 17, 17483-17490(2009).

    [43] J. Liu, F. Fan, Z. Tan. Terahertz cascaded metasurfaces for both spin-symmetric and asymmetric beam diffractions with active power distribution. APL Photon., 8, 096112(2023).

    Yi-Ming Wang, Fei Fan, Hui-Jun Zhao, Jing Liu, Yun-Yun Ji, Jie-Rong Cheng, Sheng-Jiang Chang, "Active broadband unidirectional focusing of terahertz surface plasmons based on a liquid-crystal-integrated on-chip metadevice," Photonics Res. 12, 2148 (2024)
    Download Citation