• Optoelectronics Letters
  • Vol. 18, Issue 6, 378 (2022)
Hua BAI1, Changhao LU1, Ming MA1、*, Shulin YAN2、3, Jianzhong ZHANG2、3, and Zhibo HAN2、3、4
Author Affiliations
  • 1Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, China
  • 2Tianjin Key Laboratory of Engineering Technologies for Cell Phamaceutical, Tianjin 300457, China
  • 3National Engineering Research Center of Cell Products/AmCellGene Co., Ltd., Tianjin 300457, China
  • 4State Key Lab of Experimental Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
  • show less
    DOI: 10.1007/s11801-022-1129-3 Cite this Article
    BAI Hua, LU Changhao, MA Ming, YAN Shulin, ZHANG Jianzhong, HAN Zhibo. An improved U-Net for cell confluence estimation[J]. Optoelectronics Letters, 2022, 18(6): 378 Copy Citation Text show less
    References

    [1] SONG N, SCHOLTEMEIJER M, SHAH K. Mesenchymal stem cell immunomodulation:mechanisms and therapeutic potential[J]. Trends in pharmacological sciences, 2020, 41(9):653-664.

    [2] BLAU H M, DALEY G Q. Stem cells in the treatment of disease[J]. The new England journal of medicine, 2019, 380(18):1748-1760.

    [3] GHANE N, VARD A, TALEBI A, et al. Segmentation of white blood cells from microscopic images using a novel combination of K-Means clustering and modified watershed algorithm[J]. Journal of medical signals & sensors, 2017, 7(2):92-101.

    [4] ARULMURUGAN R, ANANDAKUMAR H. Region-based seed point cell segmentation and detection for biomedical image analysis[J]. International journal of biomedical engineering and technology, 2018, 27(4):273-289.

    [5] JO H J, HAN J H, KIM Y S, et al. A novel method for effective cell segmentation and tracking in phase contrast microscopic images[J]. Sensor, 2021, 21(10):3516.

    [6] MOTA S M, ROGERS R E, HASKELL A W, et al. Automated mesenchymal stem cell segmentation and machine learning-based phenotype classification using morphometric and textural analysis[J]. Journal of medical imaging, 2021, 8(1):014503.

    [7] ZHAO Z Q, ZHENG P, XU S T, et al. Object detection with deep learning:a review[J]. IEEE transactions on neural networks and learning systems, 2019, 30(11):3212-3232.

    [8] TAGHANAKI S A, ABHISHEK K, COHEN J P, et al. Deep semantic segmentation of natural and medical images:a review[J]. Artificial intelligence review, 2021, 54(1):137-178.

    [9] RAWAT W, WANG Z H. Deep convolutional neural networks for image classification:a comprehensive review[J]. Neural computation, 2017, 29(9):2352-2449.

    [10] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition, June 7-12, 2015, Boston, MA, USA. New York:IEEE, 2015:3431-3440.

    [11] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the Medical Image Computing and Computer-Assisted Intervention, October 5-9, 2015, Munich, Germany. Berlin Heidelberg:Springer, 2015:234-241.

    [12] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(12):2481-2495.

    [13] ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, July 21-26, 2017, Honolulu, HI, USA. New York:IEEE, 2017:2881-2890.

    [14] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV), September 8-14, 2018, Munich, Germany. Berlin Heidelberg :Springer, 2018:801-818.

    [15] FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 15-20, 2019, Long Beach, USA. New York:IEEE, 2019:3146-3154.

    [16] SOLEIMANI S, MIRZAEI M, TONCU D C. A new method of SC image processing for confluence estimation[J]. Micron, 2017, 101:206-212.

    [17] SHAO Y B, XU Z L, YAO T Z. Calculation of cell growth confluence based on region growth[J]. Computer science and application, 2020, 10(2):236-244.

    [18] WANG Z N, ZHAN R C, HU Y. Automated confluence measurement method for mesenchymal stem cell from brightfield microscopic images[J]. Microscopy and microanalysis, 2021, 27(5):1093-1101.

    [19] ZHANG M, LI X, XU M J, et al. Automated semantic segmentation of red blood cells for sickle cell disease[J]. IEEE journal of biomedical and health informatics, 2020, 24(11):3095-3102.

    [20] BINICI R C, AYANZADEH A, T?REYIN B U, et al. Automated segmentation of cells in phase contrast optical microscopy time series images[C]//2019 Medical Technologies Congress, October 3-5, 2019, Izmir, Turkey. New York:IEEE, 2019:1-4.

    [21] TSAI H F, GAJDA J, SLOAN T, et al. Usiigaci: instance-aware cell tracking in stain-free phase contrast microscopy enabled by machine learning[J]. SoftwareX, 2019, 9:230-237.

    [22] AYANZADEH A, ?ZUYSAL ? Y, OKVUR D P, et al. Deep learning based segmentation pipeline for label-free phase-contrast microscopy images[C]//2020 28th Signal Processing and Communications Applications Conference, October 5-7, 2020, Gaziantep, Turkey. New York:IEEE, 2021:1-4.

    [24] IOFFE S, SZEGEDY C. Batch normalization :accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning, July 6-11, 2015, Lille, France. Pittsburg:IMLS, 2015:448-456.

    [25] GONG W, HAN Z B, ZHAO H, et al. Banking human umbilical cord derived mesenchymal stromal cells for clinical use[J]. Cell transplantation, 2012, 21(1) :207-216.

    [26] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation : version 3[EB/OL]. (2017-12-05)[2021-08-20]. https://arxiv.org/abs/1706.05587.

    [27] LIAO J C, CAO L B, LI W, et al. UnetDVH-Linear:linear feature segmentation by dilated convolution withvertical and horizontal kernels[J]. Sensors, 2020,20(20):5759.

    [28] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. Journal of machine learning research, 2014, 15(1):1929-1958.

    BAI Hua, LU Changhao, MA Ming, YAN Shulin, ZHANG Jianzhong, HAN Zhibo. An improved U-Net for cell confluence estimation[J]. Optoelectronics Letters, 2022, 18(6): 378
    Download Citation