• Acta Photonica Sinica
  • Vol. 49, Issue 6, 0630003 (2020)
Xu-sheng XIA1,2, Xiang-long CAI1, Zhong-hui LI1, Chen-cheng SHEN1,2..., Wan-fa LIU1, Yu-qi JIN1, Feng-ting SANG1 and Jing-wei GUO1,*|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/gzxb20204906.0630003 Cite this Article
    Xu-sheng XIA, Xiang-long CAI, Zhong-hui LI, Chen-cheng SHEN, Wan-fa LIU, Yu-qi JIN, Feng-ting SANG, Jing-wei GUO. Algorithm for Broadband Brillouin Spectra Analysis Based on Thomae's Function[J]. Acta Photonica Sinica, 2020, 49(6): 0630003 Copy Citation Text show less

    Abstract

    As the seed-injected lasers widely used in Brillouin Lidar area are too expensive and huge, the algorithm for a broadband Brillouin signal should be developed, which could accelerate the application of compact and economic diode lasers. A variation of Thomae's function was found during the signal processing of broadband Brillouin lidar, and the property of this function-reaching minimum value at the Brillouin frequency shift was used to recover the original signal spectrum and the corresponding frequency shift from a 1:1 superposition of pump light and Brillouin light spectra. Experiments using test data show nearly 100% accuracies for ideal cases; but for non-ideal cases, only when the noise level is less than -30 dB and the ratio of pump light to Brillouin light is less than 1.05 can this algorithm obtain accurate result.
    $ g = - \frac{1}{4}({\beta _s} + \beta ){\rm{ }} + \frac{1}{4}\sqrt {{{({\beta _s} + \beta )}^2} - 4\left( {\beta {\beta _s} - \frac{{{\gamma ^2}{k_1}{k_s}{{\left| {{E_2}} \right|}^2}}}{{2\rho \upsilon _s^2\varepsilon }}} \right)} $ (1)

    View in Article

    $ E_1^*(q){\rm{ }} = E_1^*\left( 0 \right){{\rm{e}}^{gq}} $ (2)

    View in Article

    $ g(x)=f(x)+f(x+b) $ (3)

    View in Article

    $ g(x)=\sum\limits_{nZ} {Fnei2πnx+} \sum\limits_{nZ} {Fnei2πn(x+b)n=} \sum\limits_{nZ} {(Fn+Fnei2πnb)ei2πnx} $ (4)

    View in Article

    $ {G_n} = {F_n} + {F_n}{{\rm{e}}^{ - {\rm{i}}2\pi nb}} \Rightarrow {F_n} = \frac{{{G_n}}}{{1 + {{\rm{e}}^{ - {\rm{i}}2\pi nb}}}} $ (5)

    View in Article

    $ {F_n} \approx \frac{{{G_n}}}{{1 + \left( {1 - \varepsilon } \right){{\rm{e}}^{ - {\rm{i}}2\pi nb}}}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \delta \ll 1 $ (6)

    View in Article

    $ {F_n}({b_{{\rm{trial}}}}){\rm{ }} = {G_n}{X_n}({b_{{\rm{trial}}}}) $ (7)

    View in Article

    $ {X_n}({b_{{\rm{trial}}}}) = \frac{1}{{1 + \left( {1 - \varepsilon } \right){{\rm{e}}^{ - {\rm{i}}2\pi n{b_{{\rm{trial}}}}}}}} $ (8)

    View in Article

    $ \left\{ btrial=q/ppevenandp,qarecoprimen=kp/2kodd \right. $ (9)

    View in Article

    $ \sum\limits_{n=N/2}^{N/2} {{X_n}({b_{{\rm{trial}}}}) = 2} \left\lfloor {(N - p)/2p + 1} \right\rfloor \times (1/ε) $ (10)

    View in Article

    $ \Rightarrow \mathop {\lim }\limits_{Nε0+} \sum\limits_{n = N/2}^{N/2} {{X_n}({b_{{\text{trial}}}})\varepsilon /N{\text{ }} = } \mathop {\lim }\limits_{N \to \infty } \frac{{\left\lfloor {(N - p)/2p + 1} \right\rfloor }}{N} = 1/p $ (11)

    View in Article

    $ \mathop {\lim }\limits_{Nε0+} \sum\limits_{n = N/2}^{N/2} {{X_n}({b_{\text{t}}})\varepsilon /N{\text{ }} = } \left\{ 1/pbt=q/p,pisevenand p,qare coprime0bt=q/p,pis odd and p,qare coprime0btis irrational \right. $ (12)

    View in Article

    $ f(x){\text{ }} = \left\{ 1pifx=qp,with p N and q Z N coprime0ifxis irrational \right. $ (13)

    View in Article

    $ {G_n} = (1 + {{\text{e}}^{ - {\text{i}}2\pi n{b_{{\text{real}}}}}}){F_{n, {\text{real}}}} $ (14)

    View in Article

    $ \sum\limits_{n = N/2}^{N/2} {\left| {{F_n}({b_{{\text{trial}}}}){\text{ }}} \right| = \sum\limits_{n = N/2}^{N/2} {\left| {{G_n}{X_n}({b_{{\text{trial}}}})} \right|} } = \sum\limits_{n = N/2}^{N/2} {\left| {\frac{{1 + {{\text{e}}^{ - {\text{i}}2\pi n{b_{{\text{real}}}}}}}}{{1 + \left( {1 - \varepsilon } \right){{\text{e}}^{ - {\text{i}}2\pi n{b_{{\text{trial}}}}}}}}{F_{n, {\text{real}}}}} \right|} $ (15)

    View in Article

    $ \sum\limits_{ N/2}^{N/2} {\left| {{F_n}({b_{{\text{trial}}}}){\text{ }}} \right| = {\kern 1pt} {\kern 1pt} } \sum\limits_{ N/2}^{N/2} {\left| {\frac{{{G_n}}}{{1 + \left( {1 - \varepsilon } \right){\text{exp}}\left( { - {\text{i}}2\pi n{b_{{\text{trial}}}}} \right)}}{\text{ }}} \right|{\kern 1pt} {\kern 1pt} } $ (16)

    View in Article

    $ N/2N/211+(1ε)expi2πnbtrial=N/2N/211+(1ε)expi2π(n)(btrial)=N/2N/211+(1ε)expi2π(n)(1btrial)Xn(btrial)=Xn(1btrial) $ (17)

    View in Article

    $ {F_n}({b_{{\text{trial}}}}) = \left( {{G_n} + {N_n}} \right){{\text{X}}_n}({b_{{\text{trial}}}}) $ (18)

    View in Article

    Xu-sheng XIA, Xiang-long CAI, Zhong-hui LI, Chen-cheng SHEN, Wan-fa LIU, Yu-qi JIN, Feng-ting SANG, Jing-wei GUO. Algorithm for Broadband Brillouin Spectra Analysis Based on Thomae's Function[J]. Acta Photonica Sinica, 2020, 49(6): 0630003
    Download Citation